Physics, asked by Anonymous, 1 month ago

\LARGE{ \orange\bigstar \; \red {\underline{ \mathcal{Q}\sf{UESTION :}} }}
Two vectors having equal magnitudes A make an angle theta with eahc other. Find the magnitude and direction of the resultant.
\\
\LARGE{ \orange\bigstar \; \green {\underline{ \mathcal{A}\sf{NSWERS :}}}}
\sf{1. \; 2Acos \dfrac{\theta}{2}}
\sf{2. \; \dfrac{\theta}{2}}
\\
\LARGE{ \orange\bigstar \; \blue {\underline{ \mathcal{R}\sf{EQUEST :}}}}
Please explain it step-by-step and please explain the trigonometry part in detail and mention the trigonometric identities that you have used in solving.​​

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Let assume that

\red{\rm :\longmapsto\:\vec{a} \: and \: \vec{b} \: are \: two \: vectors \: inclined \: at \: angle \:  \theta}

Further given that,

\red{\rm :\longmapsto\: |\vec{a}| = A}

and

\red{\rm :\longmapsto\: |\vec{b}| = A}

Let assume that magnitude of resultant vector be R.

We know,

\red{\rm :\longmapsto\:R =  \sqrt{ { |\vec{a}| }^{2}  +  { |\vec{b}| }^{2}  + 2 |\vec{a}| \:  |\vec{b}|   \: cos\theta}}

So, on substituting the values, we get

\rm :\longmapsto\:R =  \sqrt{ {A}^{2} +  {A}^{2}   + 2A \times A \times cos\theta}

\rm :\longmapsto\:R =  \sqrt{2 {A}^{2}  +  {2A}^{2}  cos\theta}

\rm :\longmapsto\:R =  \sqrt{2 {A}^{2}(1 + cos\theta)}

We know,

\boxed{ \bf \:1 + cos2x =  {2cos}^{2}x}

So, using this, we get

\rm :\longmapsto\:R =  \sqrt{2 {A}^{2} \times  {2cos}^{2} \dfrac{\theta}{2} }

\rm :\longmapsto\:R =  \sqrt{4{A}^{2}   {cos}^{2} \dfrac{\theta}{2} }

\red{\rm :\longmapsto\:R = 2Acos\dfrac{\theta}{2}}

Now,

Let assume that,

\red{\rm :\longmapsto\:Resultant \: R \: makes \: an \: angle \: x \: with \: \vec{a}}

So,

\boxed{ \rm \:tanx =  \frac{ |\vec{b}| \: sin\theta }{ |\vec{b}| cos\theta + |\vec{a}|  } }

So, on substituting the values, we get

\rm :\longmapsto\:tanx = \dfrac{Asin\theta}{Acos\theta + A}

\rm :\longmapsto\:tanx = \dfrac{Asin\theta}{A(cos\theta + 1)}

We know,

\boxed{ \bf \:sin2x = 2sinx \: cosx}

and

\boxed{ \bf \:1 + cos2x =  {2cos}^{2}x}

\rm :\longmapsto\:tanx = \dfrac{2sin\bigg[\dfrac{\theta}{2} \bigg]cos\bigg[\dfrac{\theta}{2} \bigg]}{2 {cos}^{2}\bigg[\dfrac{\theta}{2} \bigg] }

\rm :\longmapsto\:tanx = tan\bigg[\dfrac{\theta}{2} \bigg]

\bf\implies \:x = \dfrac{\theta}{2}

Attachments:
Similar questions