Math, asked by AnanyaBaalveer, 15 days ago


\large \orange{\underbrace{\bf{ \red{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Question \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}}

A coin is tossed 6 times, and the outcomes are noted. How many possible outcomes can be there?
________________________________
No spam​

Answers

Answered by asmitagogate2006
2

Step-by-step explanation:

A coin is tossed 6 times ,

so the sample space is -

S = { 1 , 2 , 3 , 4 , 5 , 6 }

And sample points are -

n ( S ) = 6

So there are 6 possible outcomes.

mark me brainliest.

Answered by Anonymous
87

 \star \; {\underline{\boxed{\pmb{\green{\sf{ \; Given \; :- }}}}}}

  • A Coin is tossed 6 times

 \\ \\

 \star \; {\underline{\boxed{\pmb{\orange{\sf{ \; To \; Find \; :- }}}}}}

  • Total No. of Outcomes = ?

 \\ \qquad{\rule{200pt}{2pt}}

 \star \; {\underline{\boxed{\pmb{\purple{\sf{ \; SolutioN \; :- }}}}}}

 \dag \; {\underline{\underline{\pmb{\sf{ \; Calculating \; the \; Total \; Outcomes \; :- }}}}}

 \longmapsto As we know that when a coin is tossed there are two outcomes head & tail .So :

 \qquad \; \; \longrightarrow {\underline{\boxed{\pmb{\sf{ One \; Toss = 2 \; Outcomes }}}}} \; \red\bigstar

 \\

 \longmapsto If the Coin will be tossed 6 times .So, in each throw, the number of ways to get a different face will be 2 .By multiplicative principle we have :

 \begin{gathered} \qquad \; \longrightarrow \; \sf{ Six \; Tosses = 2 \times 2 \times 2 \times 2 \times 2 \times 2 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf{ Six \; Tosses = {2}^{3} \times {2}^{3} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf{ Six \; Tosses = {2}^{6} } \\ \\ \\ \end{gathered}

 \qquad \; \; \longrightarrow {\underline{\boxed{\pmb{\sf{ Six \; Tosses = 64 \; Outcomes }}}}} \; \purple\bigstar

 \\ \\

 \therefore \; There could be 64 Possible Outcomes .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions