Math, asked by AnanyaBaalveer, 10 hours ago


\large \orange{\underbrace{\tt{ \red{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Question \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}}

In the figure, given below, AB and CD are two parallel chords and O is the center. If the radius of the circle is 15cm , find the distance MN between the two chords of lengths 24cm and 18cm respectively.
________________________________
NO SPAM
NEED RIGHT ANSWER WITH EXPLANATION
________________________________​

Attachments:

Answers

Answered by missattitudequeen77
21

Given – AB = 24 cm, cd = 18 cm

⇒ AM = 12 cm, CN = 9 cm Also, OA = OC = 15 cm

Let MO = y cm, and ON = x cm In right angled ∆AMO

(OA)2=(AM)2+(OM)2

⇒ 152=122+y2

⇒ y2=152-122

⇒ y2=225-144

⇒y2=81

⇒ y = 9 cm

In right angled ΔCON

(OC)2=(ON)2+(CN)2

152=x2+92

x2=152-92

x2=225-81

⇒ x2=144

 ⇒ y = 12 cm

Now, MN = MO + ON

= y + x

= 9 cm +12 cm

= 21 cm

hope it's help u

Answered by mathdude500
43

\large\underline{\sf{Solution-}}

Given that,

  • O be the center of circle having radius, r = 15 cm.

  • AB and CD are two parallel chords on the either side of the center of circle such that AB = 24 cm and CD = 18 cm

  • OM and ON are perpendicular drawn from center O on AB and CD respectively.

Now, we have to find distance between two parallel chord.

Now,

We know, perpendicular drawn from centre bisects the chord.

So, AM = MB = \rm \: \dfrac{1}{2} AB = 12 cm

Also, CN = ND = \rm \: \dfrac{1}{2} CD = 9 cm

Now, Join OA and OC.

So, OA = OC = r = 15 cm

Now, In  \triangle OAM,

By using Pythagoras Theorem, we have

\rm \:  {OA}^{2} =  {AM}^{2} +  {OM}^{2}  \\

\rm \:  {15}^{2} =  {12}^{2} +  {OM}^{2}  \\

\rm \:  225 =  144 +  {OM}^{2}  \\

\rm \:  {OM}^{2} = 225 - 144  \\

\rm \:  {OM}^{2} = 81  \\

\rm \:  {OM}^{2} =  {9}^{2}   \\

\bf\implies \:OM \:  =  \: 9 \: cm \\

Now, In  \triangle OCN

By using Pythagoras Theorem, we have

\rm \:  {ON}^{2} +  {CN}^{2}  =  {OC}^{2}  \\

\rm \:  {ON}^{2} +  {9}^{2}  =  {15}^{2}  \\

\rm \:  {ON}^{2} + 81 = 225 \\

\rm \:  {ON}^{2} = 225  - 81\\

\rm \:  {ON}^{2} = 144\\

\rm \:  {ON}^{2} =  {12}^{2} \\

\bf\implies \:ON \:  =  \: 12 \: cm \\

Now,

\rm \: MN \\

\rm \:  =  \: OM + ON \\

\rm \:  =  \: 9 + 12 \\

\rm \:  =  \: 21 \: cm \\

Hence,

\bf\implies \:MN \:  =  \: 21 \: cm \\

Similar questions