Math, asked by spbankingandsscserie, 4 days ago


  \large \pink\star\ \large \mathfrak \pink{QUESTION}
A cylindrical bucket of height 36 cm and radius 21 cm is filled with sand. The bucket is emptied on the ground and a conical heap of sand is formed. The height of the conical heap is 12 cm. The radius of the heap at the base is
  \large \blue\star\ \large \bf \blue{With  \: Explanation}
  \large \green\star\ \large \bf \green{No \:  Spam}

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that,

A cylindrical bucket of height 36 cm and radius 21 cm is filled with sand. The bucket is emptied on the ground and a conical heap of sand is formed. The height of the conical heap is 12 cm.

Now, Dimensions of cylindrical bucket.

Radius of cylindrical bucket, r = 21 cm

Height of cylindrical bucket, h = 36 cm

So, Volume of sand in bucket is equals to volume of cylinder of radius = 21 cm and height = 36 cm.

\boxed{\sf{  \:\rm \: Volume_{(sand \:  in  \: cylindrical  \: bucket)} = \pi \:  {r}^{2}  \: h \: }} \\

Now, Dimensions of conical heap.

Height of conical heap, H = 12 cm

Let assume that radius of conical heap be R cm.

So, Volume of sand in conical heap is equals to volume of cone of radius, R and height = 12 cm.

So,

\boxed{\sf{  \:\rm \: Volume_{(sand \: in \: conical \: heap)} =  \frac{1}{3}  \: \pi \:  {R}^{2}  \: H \: }} \\

As, cylindrical bucket full of sand is emptied to form a conical heap.

So,

\:\rm \: Volume_{(sand \: in \: cylindrical \: bucket)} \:  =  \: Volume_{(sand \: in \: conical \: heap)} \:  \\

\rm \: \pi \:  {r}^{2}  \: h \:  =  \: \frac{1}{3}  \: \pi \:  {R}^{2}  \: H \\

\rm \:   {r}^{2}  \: h \:  =  \: \frac{1}{3}  \: {R}^{2}  \: H \\

On substituting the values of r, h and H, we get

\rm \: 21 \times 21 \times 36 = \dfrac{ {R}^{2} }{3}  \times 12 \\

\rm \: 21 \times 21 \times 36 =  {R}^{2}  \times 4 \\

\rm \: 21 \times 21 \times 9=  {R}^{2}   \\

\rm \:  {R}^{2} = 21 \times 21 \times 3 \times 3   \\

\rm \: R =  \sqrt{21 \times 21 \times 3 \times 3}  \\

\rm \: R = 21 \times 3 \\

\rm\implies \:R = 63 \: cm \\

Hence, The radius of conical heap, R = 63 cm.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}} \\

\boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \: {r}^{3} }} \\

\boxed{ \sf{ \: Volume_{(hemisphere)} = \dfrac{2}{3} \pi \: {r}^{3} }} \\

\boxed{ \sf{ \: Volume_{(frustum)} = \dfrac{\pi \: h}{3}( {R}^{2} +  {r}^{2}  + Rr)}} \\

\boxed{ \sf{ \: CSA_{(cylinder)} = 2\pi \: rh}} \\

\boxed{ \sf{ \: CSA_{(cone)} = \pi \: rl}} \\

\boxed{ \sf{ \: TSA_{(cylinder)} = 2\pi \: r(h + r)}} \\

\boxed{ \sf{ \: TSA_{(cone)} = \pi \: r(l + r)}} \\

Answered by pradhanmadhumita2021
27

 \huge \mathfrak \green {I  \: hope \:  this  \: answer  \: will \:  be  \: helpful}

Attachments:
Similar questions