English, asked by Anonymous, 3 months ago

{\large{\pmb{\sf{\underline{Hello \: Viewers!!}}}}}

\red{\bigstar}\:{\large{\pmb{\sf{\underline{A \: chemistry \: question...}}}}}

1) The average atomic mass of a sample of an element {\sf{X}} is {\sf{16.2 \: u}} What are the percentage of isotopes {\sf{{}^{16}_{ \:  \: 8}X}} and {\sf{{}^{18}_{ \:  \: 8}X}} in the sample?

\red{\bigstar}\:{\large{\pmb{\sf{\underline{Remember...}}}}}

• "Please" don't spam!

• "Please" give answers by following all the rules of Brainly means no copy-paste, pilgrimage not allowed or else!

• Thank you for answer in advance! :) But I need answer, don't take thank before answering properly with explaination! ​

Answers

Answered by Anonymous
18

Given :

\sf The  \: average  \: atomic \:  mass  \: of  \: a  \: sample  \\ \sf \:of  \: an  \: element \: is \:  {\sf{X}} \: is \:  {\sf\red{16.2 \: u}}

To find :

\sf What  \: are \:  the \:  percentage \:  of \:  isotopes \:  {\sf{{}^{16}_{ \: \: 8}X}} and {\sf{{}^{18}_{ \: \: 8}X}} \sf \: in \:  the  \: sample?

Solution :

Let us , take

\sf \red {The  \: average \:  atomic  \: mass \:  of  \: a  \: sample   \: \green{X = 16.2 u.}}

\sf Let  \: the  \: percent  \: of \:  isotope  \: of  \: {\sf{{}^{16}_{ \: \: 8}X}} \:  H  \: be \:  y  \: and \:  percent  \: of \:  isotope \:  of  \: y \red  \{= (100 – y)%}

\sf18 \times  \frac{Y}{100}  + 16 \times  \frac{(100 - Y)}{100}  \green{= 16.2}

\sf \frac{18 \:  Y}{100}  +  \frac{16(100 - Y)}{100} \red{ = 16.2}

\sf   \: 18y + 1600 = 16y = 1620

\sf   \: 2y  \: = 1620 – 1600

\sf ∴ 2y = 20

\sf y = 10

\sf Percentage  \: of  \: isotope  \: X \red{= 10 \: percent }

\sf Percentage  \: of  \: isotope \:   \green y = 100 - 10 = 90%.

Therefore, the percentage will be got 90%

Answered by ItzFadedGuy
31

\underline{\orange{\sf{Given:-}}}

We are given that, average atomic mass of a sample of X is 16.2 u.

\underline{\orange{\sf{To\:Find:-}}}

We need to find the percentage of the following isotopes:

\tt{\implies ^{16}_8X}

\tt{\implies ^{18}_8X}

\underline{\orange{\sf{Assumptions:-}}}

Let:

\tt{\implies Percentage\:of\:^{18}_8X = a}

Then, we know that:

\tt{\implies Percentage\:of\:^{18}_8X+Percentage\:of\:^{16}_8X = 100}

\tt{\implies a+Percentage\:of\:^{16}_8X = 100}

\tt{\implies Percentage\:of\:^{16}_8X = 100-a}

\underline{\orange{\sf{Solution:-}}}

To find the average atomic mass, we use the formula:

\tt{\implies \dfrac{Atomic\:mass\:of\:^{18}_8X \times Percentage\:of\:^{18}_8X+Atomic\:mass\:of\:^{16}_8X \times Percentage\:of\:^{16}_8X}{100}}

\tt{\implies \dfrac{18a+16(100-a)}{100} = 16.2}

\tt{\implies \dfrac{18a+1600-16a}{100} = 16.2}

\tt{\implies \dfrac{2a+1600}{100} = 16.2}

On cross multiplying the equation, we get:

\tt{\implies 2a+1600 = 100 \times 16.2}

\tt{\implies 2a+1600 = 1620}

\tt{\implies 2a = 1620-1600}

\tt{\implies 2a = 20}

\tt{\implies a = \dfrac{20}{2}}

\tt{\implies a = 10}

\underline{\orange{\sf{Conclusion:-}}}

\tt{\implies Percentage\:of\:^{18}_8X = 10}

\tt{\implies Percentage\:of\:^{16}_8X = 100-10 = 90}

Hence, the percentage of the isotopes are 90% and 10% respectively.

Similar questions