Math, asked by av60464, 2 months ago

[tex] \large \purple \bigstar \: \color{red} \boxed{ \sf\color{maroon}{Quality \: Question : }}[\tex] If there is a set A and A={1,-2,4,-8....}, then write it in set builder form​

Answers

Answered by mathdude500
2

Basic Concept :-

Set Builder Form :-

  • In the set builder form, every elements of the set, must possess a property to become the member of that set.

  • The set A = {x : x is a vowel} is read as "The set A equals to x such that x is a vowel."

Let's solve the problem now!!!

Given Question :-

If A = {1, - 2, 4, - 8, - - -}, then write A in set builder form.

Solution :-

Given set is

\rm :\longmapsto\:A =  \{1, - 2,4, - 8, -  -  -  \}

Let first make a pattern.

\rm :\longmapsto\:A =  \{ {2}^{0} , -  {2}^{1} , {2}^{2} , -  {2}^{3} , -  -  -  \}

\rm :\longmapsto\:A =  \{ {( - 2)}^{0} ,  {( - 2)}^{1} , {( - 2)}^{2} ,  {( - 2)}^{3} , -  -  -  \}

\rm :\longmapsto\:A =  \{ {( - 2)}^{1 - 1} ,  {( - 2)}^{2 - 1} , {( - 2)}^{3 - 1} ,  {( - 2)}^{4 - 1} , -  -  -  \}

So,

Set Builder Form is

 \red{\bf :\longmapsto\:A =  \{x : x =  {( - 2)}^{n - 1}, \: n \in \: N \}}

Additional Information :-

Let solve few more problems

Example :- 1

Express in set builder form :-

\rm :\longmapsto\:A \: = \: \{1, 4, 9, 16, \: - - - \}

Solution :-

Let first make a pattern.

\rm :\longmapsto\:A \: = \: \{ {1}^{2} ,  {2}^{2} ,  {3}^{2} ,  {4}^{2} , \: - - - \}

So,

Set Builder form is

\blue{\bf :\longmapsto\:A =  \{x : x =  {n}^{2}, \: n \in \: N \}}

Example :- 2

Express in set builder form :-

\rm :\longmapsto\:A \: = \: \{2, 4, 6, 8, \: - - - \}

Solution :-

Let first make a pattern

\rm :\longmapsto\:A \: = \: \{2 \times 1, 2 \times 2, 2 \times 3, 2 \times 4, \: - - - \}

So,

Set Builder Form is

\green{\bf :\longmapsto\:A =  \{x : x =  {2n}, \: n \in \: N \}}

Similar questions