Math, asked by ʙʀᴀɪɴʟʏᴡɪᴛᴄh, 3 months ago

 \large\ \: Question


\  \textless \ br /\  \textgreater \ ( { \tan }^{2} A \:  -  { \tan}^{2} B) =  \large\frac{( { \sin }^{2} A -  { \sin }^{2}B) }{ { \cos }^{2}a \:  { \cos }^{2}B}  = \large\frac{ { \cos }^{2}B  \:  -  \:{ \cos}^{2}A}{ { \cos }^{2}B \:  { \cos }^{2}A}
__________________________
NOTE ☟
☞ Spam Answer RePorted.
☞ Full Explanation.​

Answers

Answered by ayanzubair
3

LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B

LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)

LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2A

LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2AAlso 

LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2AAlso cos

Answered by Anonymous
12

Required Answer is in attachment!

Related Trigonometric identities::

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Trigonometric ratios::

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Kindly see this answer on web to see formula table.

Liñk: https://brainly.in/question/37811005

Attachments:
Similar questions