☟
__________________________
NOTE ☟
☞ Spam Answer RePorted.
☞ Full Explanation.
Answers
Answered by
3
LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B
LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)
LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2A
LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2AAlso
LHS=tan2A−tan2B=cos2sin2A−cos2Bsin2B=cos2Acos2Bsin2Acos2B−cos2Asin2B=cos2Acos2B(1−cos2A)cos2A(1−cos2B)=cos2Acos2Bcos2B−cos2Acos2B−cos2A+cos2Acos2B=cos2Acos2Bcos2B−cos2AAlso cos
Answered by
12
Required Answer is in attachment!
Related Trigonometric identities::
Trigonometric ratios::
Kindly see this answer on web to see formula table.
Liñk: https://brainly.in/question/37811005
Attachments:
Similar questions