Math, asked by AnanyaBaalveer, 3 days ago


\large\red{ \bf \implies{Question}}
Find the total surface area and lateral surface area of a shoe box whose length, breath, and height are 30CM, 25CM and 15 cm respectively.
\large\blue{\bf{this \: is \: for \: mathdude}}

Answers

Answered by Anonymous
162

Given that,

=> Length = 30cm

=> Breadth = 25cm

=> Height = 15cm

To find :-

=> Total surface area (TSA) and Lateral surface area (LSA)

_______________

Solution :-

=> TSA = 2(lb+bh+hl)

=> 2( (30×25)+(25×15)+(15×30)

=> 2(750+375+450)

=> 2 ( 1575 )

=> 3150

★ Therefore, Total surface area (TSA) is 3150cm² .

=> LSA = 2h(l+b)

=> 2×15(30+25)

=> 30(55)

=> 1650

★ Therefore, Lateral surface area (LSA) is 1650cm².

_______________


BrainIyMSDhoni: Good :)
Answered by mathdude500
46

\large\underline{\sf{Solution-}}

Given that,

  • Length of shoe box, l = 30 cm

  • Breadth of shoe box, b = 25 cm

  • Height of shoe box, h = 15 cm

We know,

Total Surface Area of cuboid of length l, breadth b and height h is given by

\boxed{ \rm{ \:TSA_{(Cuboid)} \:  =  \: 2(lb \:  +  \: bh \:  +  \: hl )\:  \: }} \\

So, on substituting the values, we get

\rm \: TSA_{(Cuboid)} = 2(30 \times 25 + 25 \times 15 + 15 \times 30) \\

\rm \: TSA_{(Cuboid)} = 2(750 + 375 + 450) \\

\rm \: TSA_{(Cuboid)} = 2 \times 1575 \\

\rm\implies \:\boxed{ \rm{ \:TSA_{(Cuboid)} \:  =  \: 3150 \:  {cm}^{2}  \: }} \\

Now, We know

Curved Surface Area of cuboid of length l, breadth b and height h is given by

\boxed{ \rm{ \:CSA_{(Cuboid)} \:  =  \: 2(l + b) \times h \: }} \\

So, on substituting the values, we get

\rm \: CSA_{(Cuboid)} \:  =  \: 2 \times (30 + 25) \times 15 \\

\rm \: CSA_{(Cuboid)} \:  =  \: 30 \times 55 \\

\rm\implies \:\boxed{ \rm{ \:\rm \: CSA_{(Cuboid)} \:  =  \: 1650 \:  {cm}^{2}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}


BrainIyMSDhoni: Amazing :)
Similar questions