Physics, asked by AestheticSky, 3 months ago

\large{\red{\bf Question }}

if \sf y = x^\frac{1}{2}

find the value of \sf\dfrac{dy}{dx}

Class - 11th

Juniors stay away

DONT EVEN DARE TO SPAM ... I'M ALREADY IN A TERRIBLE MOOD ⚠️⚠️⚠️⚠️⚠️⚠️​

Answers

Answered by UtsavPlayz
5

y =  {x}^{ \frac{1}{2} }

By Using,

 \dfrac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1}

We get,

 \dfrac{dy}{dx}  =  \dfrac{1}{2} {x}^{ \frac{1}{2}  - 1}

 \dfrac{dy}{dx}  =  \dfrac{1}{2}  {x}^{ \frac{ - 1}{2} }

\boxed{ \dfrac{dy}{dx}  =  \dfrac{1}{ 2\sqrt{x} } }

Be Brainly

Irony: 9th moved to 10th Grader.

Answered by King412
7

 \\   \underbrace{ \underline \color{grey}\large \sf \: Solution :-  }\\

It is also possible to find this derivative using the definition of the derivative, or

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \: f'  (x)  \: =  \: \lim_{h \rightarrow0 } \:  \dfrac{f(x + h) - f(x)}{h} \\

It's worth noting that  \sf \:y =  x^{ \frac{1}{2} }   =  \sqrt{x}  :

Now,

  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \dfrac{dy}{dx}  =  \dfrac{d}{dx}  {x}^{ \frac{1}{2} }  \\

 \\  \:  \:  \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  =  \frac{d}{dx}  \sqrt{x}

 \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: \lim_{h \rightarrow0 } \:  \dfrac{ \sqrt{ (x + h)} -  \sqrt x}{h} \\

At first, it may appear as though there is no obvious simplification, but one trick we can use is to Rationalize the denominator.

 \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: \lim_{h \rightarrow0 } \:  \dfrac{ (\sqrt{ (x + h)} -  \sqrt{x}) \:  \: ( \sqrt{(x + h)}  +  \sqrt{x} ) } {h( \sqrt{(x + h)}  +  \sqrt{x} ) }\\

 \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: \lim_{h \rightarrow0 } \:  \dfrac{ x + h +  \sqrt{x (x + h)} -   \sqrt{x(x + h)}  } {h( \sqrt{x + h}  +  \sqrt{x} ) }\\

 \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: \lim_{h \rightarrow0 } \:  \dfrac{ h } {h( \sqrt{(x + h)}  +  \sqrt{x} ) }\\

 \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: \lim_{h \rightarrow0 } \:  \:  \:  \:  \dfrac{ 1 } {( \sqrt{(x + h)}  +  \sqrt{x} ) }\\

Now , here

you will notice that , when h = 0 is substituted into the limit, we no longer have an indeterminate form, meaning we can now find derivative by simple substitution.

  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{\:   \bold{\:  \:  \dfrac{dy}{dx}  =  \dfrac{1}{ 2\sqrt{ x}}  \:  \:  }} }\\

 \\  \red {\rm{ \: Don't  \: be  \: sad , \:  Stay  \: Always  \: happy♡}} \\  \\

Similar questions