Math, asked by MizzCupid, 3 months ago

\large{\red{\bf Question }}

if \sf y = x^\frac{1}{2}

find the value of \sf\dfrac{dy}{dx}

Class - 11th

Juniors stay away​

Answers

Answered by itzPapaKaHelicopter
4

 \textbf{Given:}  \: y =  {x}^{ \frac{1}{x} }

 \textbf{Objective →}  \: \text{ To \: find}  \:  \frac{dy}{dx}

\sf \colorbox{pink} {Solution:}

 log \: y \:  =  \frac{1}{x}  \:  log \: x

 \frac{1}{x} , \frac{1}{x}  +  \frac{ - 1}{ {x}^{2} }  \:  log \: x =  \frac{1}{y}  \:  \frac{dy}{dx}

⇒ \frac{dy}{dx}  =  \frac{y}{ {x}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [1 -  log \: x]

⇒ \frac{dy}{dx}  =  \frac{ {x}^{ \frac{1}{x} } }{ {x}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [1 -  log \: x]

 \textbf{Hence the Answer is}

 \frac{dy}{dx}  =  \frac{ {x}^{ \frac{1}{x} } }{ {x}^{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: [1 -  log \: x]

 \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by Anonymous
17

{\huge{\blue\longrightarrow{\texttt{\orange A\red N\green S\pink W\blue E\purple R\red}}}}

Given

y =  {x}^{ \frac{1}{2} }

To find

 \frac{dy}{dx}

Solution

y =  {x}^{ \frac{1}{2} }

Differentiating Both Sides

 \frac{dy}{dx}  =  \frac{d( {x}^{ \frac{1}{2} }) }{dx }

Similar questions