Physics, asked by Anonymous, 1 month ago


{\large{\red{\pmb{\mathfrak{\underline{Question :-}}}}}}\  \textless \ br /\  \textgreater \
An electron moving with a velocity of 5 * 10 power 4 m/s enters with a uniform acceleration of 10 power 4m/s-² in the direction of initial motion.

Calculate :
i)Calculate the time in which the electron would acquires a velocity double to its initial velocity.
ii)How much distance electron would cover in this time.

❒Note :-
{\rightarrow{\sf{Well - explained \:  answers}}}
{\rightarrow{\sf{No \:  Spams}}}
{\rightarrow{\sf{No \:  Screenshots \:  and \:  No \:  copy \:  paste}}}
{\red{\rightarrow{\sf{\green{Use  \: LaTeX \:  to  \: Answer \:  it.}}} }}



Answers

Answered by CopyThat
12

Answer :-

Given:-

An electron moving with a velocity of 5 × 10⁴ m/s enters with a uniform acceleration of 10⁴ m/s² in the direction of initial motion.

To find:-

The time in which the electron would acquires a velocity double to its initial velocity.

How much distance electron would cover in this time.

Solution:-

⇒ Initial velocity (u) = 5 × 10⁴ m/s

⇒ Acceleration (a) = 10⁴ m/s

ATP :-

⇒ Final velocity (2u) = 2 × 5 × 10⁴ m/s

  • 10 × 10⁴ m/s

Using Kinematics:

⇒ v = u + at

⇒ t = u - u/a

  • 10 × 10⁴ - 5 × 10⁴/10⁴
  • 5 × 10⁴/10⁴
  • 5 s

Using Kinematics:

⇒ s = ut + 1/2 at²

  • 5 × 10⁴ × 5 + 1/2 (10⁴)(5)²
  • 37.5 × 10⁴ m
Answered by itsPapaKaHelicopter
5

\huge \fbox \purple{Answer✪}

 \textbf{Given:-}

\sf \colorbox{pink} {➥Initial Velocity  \: u} = 5 \times  {10}^{4} m {s}^{ - 1}

\sf \colorbox{pink} {➥Acceleration \: a = } {10}^{4} m  \: {s}^{ - 2}

 \textbf{(i) Final Velocity}

⇒\sf \colorbox{god} {v = 2u(given)}

⇒\sf \colorbox{god} {v = 2} \times 5 \times  {10}^{4} m \:  {s}^{ - 1}  \\  \:  \:  \:  \:  \:  \:   = 10 \times  {10}^{4} \sf \colorbox{god} {}m \:  {s}^{ - 1}

⇒\sf \colorbox{god} {v = u + at}

⇒\sf \colorbox{god} {t = } \frac{v - u}{a}

 \textbf{Substituting the values, we get}

︎\sf \colorbox{god} {t = } \left(  \frac{10 \times  {10}^{4}  - 5 \times  {10}^{4} }{ {10}^{4} } \right) \] =  \frac{5 \times  {10}^{4} }{ {10}^{4} }

\sf \colorbox{god} { = 5 \: sec}

 \sf \colorbox{god} {(ii) \:  \:  \:  \:  \:  \:  \:  \:  \: s = ut + } \frac{1}{2}  {at}^{2}

 \textbf{Where initial Velocity}

➥\sf \colorbox{lightgreen} {u = 5} \times  {10}^{4} m \:  {s}^{ - 1}

➥\sf \colorbox{lightgreen} {Acceleration} a =  {10}^{4} m \:  {s}^{ - 2}

➥\sf \colorbox{lightgreen} {Time t = 5 sec}

 \textbf{Substituting the values, we get}

⇒\sf \colorbox{god} {s = }(5 \times  {10}^{4} ) \times 5 +  \frac{1}{2} ( {10}^{4} ) \times (5 {)}^{2}

⇒25 \times  {10}^{4}  +  \frac{25}{2}  \times  {10}^{4}

︎ \: \fbox{37.5×10⁴m}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ⌨}

Similar questions