Math, asked by AnanyaBaalveer, 2 days ago


\large\red{\sf{Question}}
A contractor can complete a certain piece of work, with certain number of men, in 9 days. But 6 of them remained absent from the very first day, so the rest could finish the work in 15 days. How many men were originally employed ?
1-12
2-15
3-18
4-24

Answers

Answered by StarFighter
5

Answer:

Given :-

  • A contractor can complete a certain piece of work, with certain number of men, in 9 days.
  • But 6 of them remained absent from the very first day, so the rest could finish the work in 15 days.

To Find :-

  • How many men were originally employed.

Solution :-

Let,

\small \mapsto \bf Men\: were\: originally\: employed =\: x\\

According to the question :

\implies \bf 15 : 9 =\: x : (x - 6)

\implies \sf \dfrac{15}{9} =\: \dfrac{x}{(x - 6)}\\

By doing cross multiplication we get,

\implies \sf 9 \times x =\: 15(x - 6)

\implies \sf 9x =\: 15x - 90

\implies \sf 9x - 15x =\: - 90

\implies \sf {\cancel{-}} 6x =\: {\cancel{-}} 90

\implies \sf 6x =\: 90

\implies \sf x =\: \dfrac{\cancel{90}}{\cancel{6}}

\implies \sf x =\: \dfrac{15}{1}

\implies \sf\bold{\purple{x =\: 15}}

Hence, the men were originally employed is :

\small \dashrightarrow \sf Men\: were\: originally\: employed\: =\: x\\

\small \dashrightarrow \sf\bold{\red{Men\: were\: originally\:  employed =\: 15}}\\

\therefore The men were originally employed is 15 .

Hence, the correct options is option no (2) 15 .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by XxitzmissDaisyxX
3

Step-by-step explanation:

Let there be x men at the begining less men, more days

∴ 15:9::x:(x−6) ⇒ 15(x−6)=9x

⇒ 6x=90 ⇒ x=15

or

Let the contractor employed 'x' men to complete the task in 9 days.

So, TOTAL WORK = (9x) Mandays

But, 6 out of x men were absent and the remaining completed the work in 15 days.

Thus, TOTAL WORK = 15(x-6) Mandays

So, 9×x=15×(x−6)

=>6×x=90

=>x = 15 Men (Answer)

Similar questions