Math, asked by AnanyaBaalveer, 1 day ago


\large\red{\sf{Question}}
If x, y and z are positive real numbers and a, b and c are rational numbers, then the value of

\large\underline{\sf{ \frac{1}{1 +  {x}^{b - a} +  {x}^{ c- a}  }  +  \frac{1}{1 +  {x}^{a - b}  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{ b- c}  {x}^{ a- c} } }}

Answers

Answered by rohekog911
9

Answer:

1

Step-by-step explanation:

 \frac{1}{1 +  {x}^{b - a} +  {x}^{c - a}  } +  \frac{1}{1 +  {x}^{a - b} + {x}^{c - b} } +  \frac{1}{1 +  {x}^{a - c}   + {x}^{b - c} }

 \frac{1}{1 +   \frac{ {x}^{b}}{{x}^{c} } +   \frac{{x}^{c} }{ {x}^{a}  } } +  \frac{1}{1 +   \frac{{x}^{a}}{ {x}^{b} } +  \frac{{x}^{c}}{ {x}^{b} }} +  \frac{1}{1 +   \frac{{x}^{a}}{ {x}^{c} }  +  \frac{ {x}^{b}}{ {x}^{c} } }

 \frac{ {x}^{a} }{ {x}^{a} +{x}^{b}+{x}^{c}} +  \frac{ {x}^{b} }{ {x}^{b}  +{x}^{a}+{x}^{c}} +  \frac{ {x}^{c} }{ {x}^{c}  +{x}^{a}+ {x}^{b}}

 \frac{{ {x}^{a} +{x}^{b}+{x}^{c}}}{{ {x}^{a} +{x}^{b}+{x}^{c}}}

1

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given expression is

\rm \dfrac{1}{1 + {x}^{b - a} + {x}^{ c- a} } + \dfrac{1}{1 + {x}^{a - b} {x}^{c - b} } + \dfrac{1}{1 + {x}^{ b- c} {x}^{ a- c}} \\

We know, from laws of exponents,

\boxed{ \rm{ \: {x}^{m - n}  =  \frac{ {x}^{m} }{ {x}^{n} }  \: }} \\

So, using this, the abobe expression can be rewritten as

\rm  = \dfrac{1}{1 + \dfrac{ {x}^{b} }{ {x}^{a} }  + \dfrac{ {x}^{c} }{ {x}^{a} } } + \dfrac{1}{1 + \dfrac{ {x}^{c} }{ {x}^{b} }  + \dfrac{ {x}^{a} }{ {x}^{b} } } + \dfrac{1}{1 + \dfrac{ {x}^{a} }{ {x}^{c} }  + \dfrac{ {x}^{b} }{ {x}^{c} } }

can be further rewritten as

\rm  = \dfrac{1}{\dfrac{ {x}^{a} +  {x}^{b}  + {x}^{c} }{ {x}^{a} } } + \dfrac{1}{ \dfrac{ {x}^{b} +  {x}^{c}  +  {x}^{a} }{ {x}^{b} } } + \dfrac{1}{\dfrac{ {x}^{c} +  {x}^{a} + {x}^{b} }{ {x}^{c} } } \\

can be rewritten as

\rm \:  =  \: \dfrac{ {x}^{a} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} } + \dfrac{ {x}^{b} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} } + \dfrac{ {x}^{c} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  \\

\rm \:  =  \: \dfrac{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  \\

\rm \:  =  \: 1 \\

Hence,

\boxed{ \rm{ \:\dfrac{1}{1 + {x}^{b - a} + {x}^{ c- a} } + \dfrac{1}{1 + {x}^{a - b} {x}^{c - b} } + \dfrac{1}{1 + {x}^{ b- c} {x}^{ a- c}} = 1}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions