Math, asked by AnanyaBaalveer, 3 days ago


\large\red{\sf{Question}}
Simplify the following
\large\pink{\sf{ \sqrt{7  -  2\sqrt{6} } }}

Answers

Answered by 66rajmore
7

Answer:

2

Given :

bullet sqrt 7+2 sqrt 6 - sqrt 7-2 sqrt 6

To Find:

• Calculate the value.

Required Solution :

Let's start solving the problem and understand the steps to get our final result.

: Rightarrow sqrt 7+2 sqrt 6 - sqrt 7-2 sqrt 6

Simplify the expression by arranging the expression in the radical sign,

: Rightarrow1+ sqrt 6 - sqrt 7-2 sqrt 6

Simplify the expression by arranging theexpression in the radical sign,

: Rightarrow1+ sqrt 6 -(-1+6)

Change the symbol of each term in parentheses when there is a (-) symbol front of parentheses,

: Rightarrow1+ sqrt 6 +1- sqrt 6

Remove the two numbers if the values are the same and the signs are different

: Rightarrow1+1

Add 1 and 1,

: Rightarrow boxed 2

Hence Solved!

Answer is = 2

please give me brain list and thanks

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given expression is

 \sqrt{7 - 2 \sqrt{6} }  \\

can be rewritten as

 =  \sqrt{6 + 1 - 2 \sqrt{6} }  \\

 =  \sqrt{ {( \sqrt{6} )}^{2}  +  {(1)}^{2}  - 2 \sqrt{6} }  \\

 =  \sqrt{ {( \sqrt{6} )}^{2}  +  {(1)}^{2}  - 2  \times \sqrt{6} \times 1 }  \\

We know,

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2}  \: }} \\

Here,

x =  \sqrt{6}  \\

y = 1 \\

So, using above identity, we get

 =  \sqrt{ {( \sqrt{6} - 1) }^{2} }  \\

 =  \sqrt{6} - 1 \\

Hence,

\rm\implies \:\boxed{ \rm{ \: \sqrt{7 - 2 \sqrt{6} } =  \sqrt{6} - 1  \:  \: }}\\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions