Math, asked by AnanyaBaalveer, 2 days ago


\large\red{\sf{Question}}
Solve the following
 {\bf{ {\huge \int}   {e}^{ \sqrt{x} }dx }}

Answers

Answered by adharrshv478
9

Step-by-step explanation:

I=∫exdx

Put x=t

21x−1/2dx=dt

⇒dx=2tdt

So, I=2∫tetdt

=2[tet−∫etdt]

=2tet−2et+C

=2ex(x−1)+c

Answered by mathdude500
32

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  {e}^{ \sqrt{x} }  \: dx \\

To evaluate this integral, we use method of Substitution.

So, substitute

\rm \:  \sqrt{x} = y \\

\rm \: x =  {y}^{2}  \\

\rm \: dx =  2y \: dy  \\

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm {e}^{y} \: 2y \: dy \\

\rm \:  =  \: 2\displaystyle\int\rm y{e}^{y} \: dy \\

Now, on integrating by parts, we get

\rm \:  = 2\bigg(y\displaystyle\int\rm {e}^{y}dy - \displaystyle\int\rm \bigg[\dfrac{d}{dy}y\displaystyle\int\rm {e}^{y}dy \bigg]dy\bigg)  \\

\rm \:  = 2\bigg(y {e}^{y} - \displaystyle\int\rm \bigg[1 \times  {e}^{y}\bigg]dy\bigg)  \\

\rm \:  = 2\bigg(y {e}^{y} - \displaystyle\int\rm {e}^{y}dy\bigg)  \\

\rm \:  = 2\bigg(y {e}^{y} - {e}^{y}\bigg)  + c \\

\rm \:  =  \: 2{e}^{y}(y - 1) + c \\

\rm \:  =  \: 2{e}^{ \sqrt{x} }( \sqrt{x}  - 1) + c \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle\int\rm {e}^{ \sqrt{x} } dx =  \: 2{e}^{ \sqrt{x} }( \sqrt{x}  - 1) + c \: }} \\

\rule{190pt}{2pt}

Basic Concept Used :-

Integration by Parts

\boxed{ \rm{ \:\displaystyle\int\rm (u.v)dx \:  =  \:u\displaystyle\int\rm vdx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}u\displaystyle\int\rm vdx \bigg] dx}} \\

where,

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , u and v are chosen according to the word ILATE, where alphabets have the following meaning :

  • I - Inverse trigonometric functions

  • L - Logarithmic functions

  • A - Arithmetic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is taken as u and other as v.

Formulae Used :-

\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x}dx \:  =  \: {e}^{x} + c \:  \: }} \\

\boxed{ \rm{ \: \frac{d}{dx}  {x}^{n}  \:  =  \:  {nx}^{n - 1}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions