Math, asked by AnanyaBaalveer, 1 day ago


\large\red{\sf{Question}}

\large\underline{\sf{If  \:  {2}^{x}  =  {3}^{y} =  {6}^{z} \:  \: then \: z =   }}
\large\boxed{\sf{ \frac{x + y}{xy} }}
\large\boxed{\sf{ \frac{xy}{x + y} }}
\large\boxed{\sf{2xy}}
\large\boxed{\sf{ \frac{x}{y} }}

Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {2}^{x}  =  {3}^{y}  =  {6}^{z}  \\

Let assume that

\rm \:  {2}^{x}  =  {3}^{y}  =  {6}^{z} = a  \\

So,

\rm\implies \:\rm \:  {2}^{x} = a \rm\implies \:2 =  {\bigg(a\bigg) }^{\dfrac{1}{x} } \cdots(1)  \\

Also,

\rm\implies \:\rm \:  {3}^{y} = a \rm\implies \:3 =  {\bigg(a\bigg) }^{\dfrac{1}{y} } \cdots(2)  \\

Also,

\rm\implies \:\rm \:  {6}^{z} = a \rm\implies \:6 =  {\bigg(a\bigg) }^{\dfrac{1}{z} }  \\

can be further rewritten as

\rm \: 2 \times 3 = {\bigg(a \bigg) }^{\dfrac{1}{z} } \\

On substituting the values of 2 and 3, from equation (1) and (2), we get

\rm \: {\bigg(a \bigg) }^{\dfrac{1}{x} } \times {\bigg(a\bigg) }^{\dfrac{1}{y} } = {\bigg(a \bigg) }^{\dfrac{1}{z} } \\

We know,

\boxed{ \rm{ \: {x}^{m} \times  {x}^{n}  =  {x}^{m + n}  \:  \: }} \\

So, using this identity, we get

\rm \: {\bigg(a \bigg) }^{\dfrac{1}{x}  +  \dfrac{1}{y} }  = {\bigg(a \bigg) }^{\dfrac{1}{z} } \\

We know,

\boxed{ \rm{ \: {x}^{m} \:  =  \:  {x}^{n} \rm\implies \: m= n \:  \: }} \\

So, using this identity, we get

\rm \: \dfrac{1}{x}  + \dfrac{1}{y}   =  \dfrac{1}{z}  \\

\rm \: \dfrac{y + x}{xy} =  \dfrac{1}{z}  \\

\rm\implies \:z = \dfrac{xy}{x + y} \\

\rule{190pt}{2pt}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions