Math, asked by ItzHannu001, 4 days ago


 \large{ \red{ \tt{Question࿐}}}
If the height of cone is doubled then its volume increased by
a) 100%
b) 200%
c) 150%
d) 10.0%

•No spam
•Need answer with explanation
•No copy paste​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

Radius of cone be r units.

Height of cone be h units

So, Volume of cone of height h and radius r is given by

\color{green}\boxed{ \rm{ \:V_1 \:  =  \:  \frac{1}{3} \: \pi \:  {r}^{2}  \: h \:  \: }} \\

Now,

Radius of cone be r units.

Height of cone be 2h units.

So, Volume of cone of radius r and height 2h is given by

 \rm \:V_2 \:  =  \:  \frac{1}{3} \: \pi \:  {r}^{2}  \:  \times 2 \: h \:  \:  \\

So,

\color{green}\boxed{ \rm{ \:V_2 \:  =  \:  \frac{2}{3} \: \pi \:  {r}^{2}  \: h \:  \: }} \\

Now,

\rm \: \% \: age \: increase \: in \: volume \: is  \:  \\

\rm \:  =  \: \dfrac{V_2 - V_1}{V_1}  \times 100 \: \% \\

\rm \:  =  \: \dfrac{\dfrac{2}{3} \pi \:  {r}^{2} h \:  -  \: \dfrac{1}{3} \pi \:  {r}^{2} h}{\dfrac{1}{3} \pi \:  {r}^{2} h}  \times 100\% \:  \\

\rm \:  =  \: \dfrac{\dfrac{1}{3} \pi \:  {r}^{2} h \:  }{\dfrac{1}{3} \pi \:  {r}^{2} h}  \times 100\% \:  \\

\rm \:  =  \: 100 \: \% \\

Hence,

\rm\implies \:\rm \: \% \: age \: increase \: in \: volume \: is  \: =  \: 100 \: \%  \\

So, option (a) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions