Math, asked by Anonymous, 20 days ago


{\large{\red{{\underline{\boxed{\bf{Question :}}}}}}}
A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.


Please don't spam.​

Answers

Answered by Anonymous
43

Given :-

  • A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Find the area of field.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

According to Attachment :

{\red{\rightarrowtail}{\bf{AB  \: ll \:  CD}}}

{\red{\rightarrowtail}{\bf{AB = 25m}}}

{\red{\rightarrowtail}{\bf{CD = 10m}}}

{\red{\rightarrowtail}{\bf{BC = 14m}}}

{\red{\rightarrowtail}{\bf{AD = 13m}}}

From point C draw CE ll DA .

Therefore, ABCE is a parallelogram having CD ll CE .

Sides of front triangle :

{\red{\rightarrowtail}{\bf{ CB= 14m}}}

{\red{\rightarrowtail}{\bf{CE = AD = 13m}}}

{\red{\rightarrowtail}{\bf{BE = AB - AE = 25 - 10 = 15m}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Formula Used :-

Area of triangle :

{\large{\red{\bigstar \:  \:  \: {\pink{\underbrace{\underline{\orange{\bf{Area =  \sqrt{s(s - a)(s - b)(s - c)} }}}}}}}}}

Area of parallelogram :

{\large{\red {\bigstar \:  \:  \: {\pink{\underbrace{\underline{\orange{\bf{Area = \frac{1}{2 } \times sum \: of \: ll \: sides\times h  }}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

First Area of triangle :

Semi - Perimeter :

{\large{:{\longmapsto{\bf{semi - perimeter =  \frac{a + b + c}{2} }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{:{\longmapsto{\bf{ \frac{14 + 13 + 15}{2} }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{:{\longmapsto{\bf{{\cancel \frac{42}{2} }}}}}}

{\orange{\large{:{\dashrightarrow{\underline{\blue{\bf{21 m}}}}}}}}

Area :

{\large{:{\longmapsto{\bf{Area =  \sqrt{s(s - a)(s - b)(s - c)}   }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{:{\longmapsto{\bf{  \sqrt{21(21 - 14)(21- 13)(21 - 15)}   }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{:{\longmapsto{\bf{  \sqrt{21 \times 7 \times 8 \times 6}   }}}}}

{\orange{\large{:{\dashrightarrow{\underline{\blue{\bf{84 \:  {m}^{2} }}}}}}}}

Area of triangle BEC :

{\large{:{\longmapsto{\bf{Area =   \frac{1}{2}  \times b \times h  }}}}}

{\large{:{\longmapsto{\bf{84 =   \frac{1}{2}  \times 15\times h  }}}}}

{\large{:{\longmapsto{\bf{h = {\cancel  {84 \times ( \frac{2}{15})  } }}}}}}

{\orange{\large{:{\dashrightarrow{\underline{\blue{\bf{H = 11.2 m}}}}}}}}

Area of trapezium :

{\large{:{\longmapsto{\bf{Area =   \frac{1}{2}  \times \: sum \: of \: ll \: sides \times \: h }}}}}

{\large{:{\longmapsto{\bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \frac{1}{2}  \times (10 + 25)\times 11.2 }}}}}

{\large{:{\longmapsto{\bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \frac{1}{2}  \times 35\times 11.2 }}}}}

{\large{:{\longmapsto{\bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \frac{1}{\cancel{2} } \times{\cancel{ 392 }}}}}}}

{\large{\purple{:{\twoheadrightarrow{\underline{\overline{\boxed{\bf{Area  = 196 m²}}}}}}}}}

Hence :

{\large{\underline{\red{\underline{\mathfrak{\pmb{Area = 196 m²}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Attachments:

mddilshad11ab: Great¶
Similar questions