Given that,
and
To find:-
The angle between the surfaces and at (1,1,1)
All the best.
Answers
SOLUTION
GIVEN
and
To find
The angle between the surfaces
and
at (1,1,1)
CONCEPT TO BE IMPLEMENTED
The angle between the surfaces at the point is the angle between the normals to the surfaces at the point
EVALUATION
Here it is given that the two surfaces are
and
Therefore
and
Now
Then
FINAL ANSWER
The required angle is
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
Divergence of r / r^3 is
(a) zero at the origin
(b) zero everywhere
(c) zero everywhere except the origin
(d) nonzero
https://brainly.in/question/22316220
CONCEPT TO BE IMPLEMENTED
The angle between the surfaces at the point is the angle between the normals to the surfaces at the point
EVALUATION
Here it is given that the two surfaces are
\sf { \phi = \frac{5}{2} x^{2} -yz- \frac{9}{2} x = 0}ϕ=
2
5
x
2
−yz−
2
9
x=0
and
\sf { \Psi = 4x^{2} y + z^{3} - 4 = 0}Ψ=4x
2
y+z
3
−4=0
Therefore
\sf{ \nabla \phi = \bigg ( 5x - \frac{9}{2} \bigg ) \hat{i} +(-z) \hat{j} + (-y) \hat{k} }∇ϕ=(5x−
2
9
)
i
^
+(−z)
j
^
+(−y)
k
^
and
\sf{ \nabla \Psi = 8xy \hat{i} + 4x^{2} \hat{j} +3z^{2} \hat{k} }∇Ψ=8xy
i
^
+4x
2
j
^
+3z
2
k
^
Now
\displaystyle \sf{ \nabla \phi \bigg|_{(1, 1, 1)} = \frac{1}{2} \hat{i} - \hat{j} - \hat{k} }∇ϕ
∣
∣
∣
∣
∣
(1,1,1)
=
2
1
i
^
−
j
^
−
k
^
\displaystyle \sf{ \nabla \Psi \bigg|_{(1, 1, 1)} = 8 \hat{i} + 4 \hat{j} + 3 \hat{k} }∇Ψ
∣
∣
∣
∣
∣
(1,1,1)
=8
i
^
+4
j
^
+3
k
^
\sf{Let \: \theta \: be \: the \: angle }Letθbetheangle
Then
\displaystyle \sf{ \cos \theta = \frac{ \nabla \phi . \nabla \Psi}{ |\nabla \phi| |\nabla \Psi| } }cosθ=
∣∇ϕ∣∣∇Ψ∣
∇ϕ.∇Ψ
\implies \displaystyle \sf{ \cos \theta = \frac{8 - 4 - 3}{ \sqrt{ \frac{1}{4} + 1 + 1 } \times \sqrt{64 + 16 + 9} } }⟹cosθ=
4
1
+1+1
×
64+16+9
8−4−3
\implies \displaystyle \sf{ \cos \theta = \frac{1}{ \sqrt{ \frac{9}{4} } \times \sqrt{89} } }⟹cosθ=
4
9
×
89
1
\implies \displaystyle \sf{ \cos \theta = \frac{2}{ 3 \sqrt{89} } }⟹cosθ=
3
89
2
\implies \displaystyle \sf{ \theta = { \cos}^{ - 1} \bigg( \frac{2}{ 3 \sqrt{89} } \bigg) }⟹θ=cos
−1
(
3
89
2
)
FINAL ANSWER
The required angle is
\displaystyle \sf{ \theta = { \cos}^{ - 1} \bigg( \frac{2}{ 3 \sqrt{89} } \bigg) }θ=cos
−1
(
3
89
2
)