Physics, asked by Anonymous, 7 months ago

\large\rm { \bullet} Given that,

\large\rm { \nabla \phi = \bigg ( 5x - \frac{9}{2} \bigg ) \bar{i} +(-z) \bar{j} + (-y) \bar{k} } and \large\rm { \nabla \Psi = 8xy \bar{i} + 4x^{2} \bar{j} +3z^{2} \bar{k} }

To find:-

The angle between the surfaces \large\rm { \phi = \frac{5}{2} x^{2} -yz- \frac{9}{2} x = 0} and \large\rm { \Psi = 4x^{2} y + z^{3} - 4 = 0} at (1,1,1)

All the best.​

Answers

Answered by pulakmath007
106

SOLUTION

GIVEN

\sf{ \nabla \phi = \bigg ( 5x - \frac{9}{2} \bigg ) \hat{i} +(-z) \hat{j} + (-y) \hat{k} }

and

\sf{ \nabla \Psi = 8xy \hat{i} + 4x^{2} \hat{j} +3z^{2} \hat{k} }

To find

The angle between the surfaces

\sf { \phi = \frac{5}{2} x^{2} -yz- \frac{9}{2} x = 0}

and

\sf { \Psi = 4x^{2} y + z^{3} - 4 = 0}

at (1,1,1)

CONCEPT TO BE IMPLEMENTED

The angle between the surfaces at the point is the angle between the normals to the surfaces at the point

EVALUATION

Here it is given that the two surfaces are

\sf { \phi = \frac{5}{2} x^{2} -yz- \frac{9}{2} x = 0}

and

\sf { \Psi = 4x^{2} y + z^{3} - 4 = 0}

Therefore

\sf{ \nabla \phi = \bigg ( 5x - \frac{9}{2} \bigg ) \hat{i} +(-z) \hat{j} + (-y) \hat{k} }

and

\sf{ \nabla \Psi = 8xy \hat{i} + 4x^{2} \hat{j} +3z^{2} \hat{k} }

Now

 \displaystyle \sf{  \nabla \phi  \bigg|_{(1, 1, 1)} = \frac{1}{2} \hat{i}   -  \hat{j} -  \hat{k}  }

 \displaystyle \sf{  \nabla \Psi  \bigg|_{(1, 1, 1)} = 8 \hat{i}   + 4  \hat{j}  + 3 \hat{k}  }

 \sf{Let \: \theta  \:  be \:  the \:  angle }

Then

 \displaystyle \sf{ \cos \theta = \frac{ \nabla \phi . \nabla \Psi}{   |\nabla \phi|  |\nabla \Psi|  }   }

 \implies \displaystyle \sf{ \cos \theta =  \frac{8 - 4 - 3}{ \sqrt{ \frac{1}{4} + 1 + 1 } \times  \sqrt{64 + 16 + 9}  }   }

 \implies  \displaystyle \sf{ \cos \theta =  \frac{1}{ \sqrt{ \frac{9}{4}  } \times  \sqrt{89}  }   }

 \implies  \displaystyle \sf{ \cos \theta =  \frac{2}{  3  \sqrt{89}  }   }

 \implies  \displaystyle \sf{  \theta =  { \cos}^{ - 1}  \bigg(  \frac{2}{  3  \sqrt{89}  }  \bigg)  }

FINAL ANSWER

The required angle is

 \displaystyle \sf{  \theta =  { \cos}^{ - 1}  \bigg(  \frac{2}{  3  \sqrt{89}  }  \bigg)  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Divergence of r / r^3 is

(a) zero at the origin

(b) zero everywhere

(c) zero everywhere except the origin

(d) nonzero

https://brainly.in/question/22316220

Answered by XxMrGlamorousXx
0

CONCEPT TO BE IMPLEMENTED

The angle between the surfaces at the point is the angle between the normals to the surfaces at the point

EVALUATION

Here it is given that the two surfaces are

\sf { \phi = \frac{5}{2} x^{2} -yz- \frac{9}{2} x = 0}ϕ=

2

5

x

2

−yz−

2

9

x=0

and

\sf { \Psi = 4x^{2} y + z^{3} - 4 = 0}Ψ=4x

2

y+z

3

−4=0

Therefore

\sf{ \nabla \phi = \bigg ( 5x - \frac{9}{2} \bigg ) \hat{i} +(-z) \hat{j} + (-y) \hat{k} }∇ϕ=(5x−

2

9

)

i

^

+(−z)

j

^

+(−y)

k

^

and

\sf{ \nabla \Psi = 8xy \hat{i} + 4x^{2} \hat{j} +3z^{2} \hat{k} }∇Ψ=8xy

i

^

+4x

2

j

^

+3z

2

k

^

Now

\displaystyle \sf{ \nabla \phi \bigg|_{(1, 1, 1)} = \frac{1}{2} \hat{i} - \hat{j} - \hat{k} }∇ϕ

(1,1,1)

=

2

1

i

^

j

^

k

^

\displaystyle \sf{ \nabla \Psi \bigg|_{(1, 1, 1)} = 8 \hat{i} + 4 \hat{j} + 3 \hat{k} }∇Ψ

(1,1,1)

=8

i

^

+4

j

^

+3

k

^

\sf{Let \: \theta \: be \: the \: angle }Letθbetheangle

Then

\displaystyle \sf{ \cos \theta = \frac{ \nabla \phi . \nabla \Psi}{ |\nabla \phi| |\nabla \Psi| } }cosθ=

∣∇ϕ∣∣∇Ψ∣

∇ϕ.∇Ψ

\implies \displaystyle \sf{ \cos \theta = \frac{8 - 4 - 3}{ \sqrt{ \frac{1}{4} + 1 + 1 } \times \sqrt{64 + 16 + 9} } }⟹cosθ=

4

1

+1+1

×

64+16+9

8−4−3

\implies \displaystyle \sf{ \cos \theta = \frac{1}{ \sqrt{ \frac{9}{4} } \times \sqrt{89} } }⟹cosθ=

4

9

×

89

1

\implies \displaystyle \sf{ \cos \theta = \frac{2}{ 3 \sqrt{89} } }⟹cosθ=

3

89

2

\implies \displaystyle \sf{ \theta = { \cos}^{ - 1} \bigg( \frac{2}{ 3 \sqrt{89} } \bigg) }⟹θ=cos

−1

(

3

89

2

)

FINAL ANSWER

The required angle is

\displaystyle \sf{ \theta = { \cos}^{ - 1} \bigg( \frac{2}{ 3 \sqrt{89} } \bigg) }θ=cos

−1

(

3

89

2

)

Similar questions