Physics, asked by ItzAshi, 7 days ago


{\Large{\rm{\underline{\underline{\red{Question :}}}}}} \\  \\
A man pulls a roller by a force of 20 kg-f applied at 60° with the ground. If he pulls it a distance of 10 m in 1 minute, calculate the power dissipated.
(Take g = 10 m/s²)


ᴄᴏɴᴅɪᴛɪᴏɴ :

✒ Only proper solved answer needed not any kind of screenshot

✒ Don't post anything irrelevant

Answers

Answered by BlessedOne
86

Given :

  • Force acted on the roller = 20 kg-f
  • Angle formed by force on the ground = 60°
  • Distance travelled in 1 min = 10 m
  • g = 10 m/s²

To find :

  • The power dissipated.

Formula to be used :

\bf\dag \bf\:Work~=~Fd

where, F is the force and d is the displacement.

\bf\dag \bf\:Power~developed~in~time~“ t ”~=~\frac{W}{t}

where, W denotes work done and t denotes time.

Solution :

We know,

\bf\:Work~=~Fd

\sf\longrightarrow\:Work~=~m~g~Cos(60)~d

\sf\because\:F=m \times g \times Cosθ

Since force is resolved in two components :

  • one perpendicular to incline = Cosθ
  • other parallel to incline = Sinθ

Now substituting the values in -

\sf\longrightarrow\:Work~=~m~g~Cos(60)~d

\sf\longrightarrow\:Work~=~20 \times 10 \times \frac{1}{2} \times 10

\sf\longrightarrow\:Work~=~200 \times \frac{1}{2} \times 10

\sf\longrightarrow\:Work~=~\frac{200}{2} \times 10

\sf\longrightarrow\:Work~=~\cancel{\frac{200}{2}} \times 10

\sf\longrightarrow\:Work~=~100 \times 10

\sf\longrightarrow\:Work~=~1000~J

Finally calculating power dissipated -

\bf\:Power~developed~in~time~“ t ”~=~\frac{W}{t}

Substituting the values

\sf\longrightarrow\:Power~dissipated~=~\frac{1000~J}{1~min}

\sf\longrightarrow\:Power~dissipated~=~1000~J/min

\small{\underline{\boxed{\mathrm{\longrightarrow~Power~dissipated~=~1000~Watt}}}} \sf\color{cyan}{⋆}

═══════════════════‎

Answered by jhamaya913
105

Answer:

1kgwt=9.8N

So, force F=20kgwt=20×9.8N=196N

The horizontal component of the force F is Fh

=Fcos60=196cos60=98N

The required work done W=Fh

d=98×10=980J

The power developed in t=1 minute =W/t=980J/60s=16.33 Watt

Attachments:
Similar questions