Math, asked by INSIDI0US, 2 months ago

 \Large {\sf{\pmb{\underline{\underline{Challenge...}}}}}

 \sf \circ\ {Find\ all\ points\ of\ discontinuous\ of\ f,\ where\ f\ is\ defined\ by,}

\sf f(x)\ = \begin{cases} &\sf{2x\ +\ 3,\: \: \: \: \: \: \: \: if\ x \leq 2} \\ \\ &\sf{2x\ -\ 3,\: \: \: \: \: \: \: \: if\ x > 2} \end{cases}

▪︎Note :-

➽ Don't spam..
➽ Quality answer needed..​

Answers

Answered by TheDiamondBoyy
29

The Given Function is:-

\sf f(x)\ = \begin{cases} &\sf{2x\ +\ 3,\: \: \: \: \: \: \: \: if\ x \leq 2} \\ \\ &\sf{2x\ -\ 3,\: \: \: \: \: \: \: \: if\ x > 2} \end{cases}

Explaination:-

  • When x < 1 , f(x) = x+2 which being polynomial is continuous for all x < 1 

  • When x > 1 f(x) = x - 2 ,which being polynomial is continuous for all x > 1 

Now we consider point x= 2

At x = 2 

L.H.L = lim x→2- f(x) = lim x→2- f(2x+3) 

= lim h→0 { 2(2-h) +3 }

= 7

Now R.H.L 

= lim x→2+ f(x) = lim x→2+ f(2x-3) 

= lim h→ 0 2(2-h) -3 

= 1 

Thus L.H.L ≠ R.H.L 

hence , Function is discontinuous at x = 2

Attachments:
Answered by mathdude500
13

Basic Definition of Continuity :-

A function f(x) is said to be continuous at x = a, iff

\underline{\boxed{\displaystyle\tt \:\lim_{x\to \: a^-} \:  =  \: \tt \:\lim_{x\to \: a^+} = f(a)}}

\large\underline{\sf{Solution-}}

Given that,

\rm \: f(x)\ = \begin{cases} &amp;\bf{2x\ +\ 3,\: \: \: \: \: \: \: \: if\ x \leq 2} \\ \\ &amp;\bf{2x\ -\ 3,\: \: \: \: \: \: \: \: if\ x &gt; 2} \end{cases}

Here,

  • Breaking point is x = 2.

So,

  • We have to check the continuity of the function at x = 2.

Step :- 1

Value of f(x) at x = 2

\rm :\longmapsto\:f(2) = 2 \times 2 + 3 = 4 + 3 = 7 -  - (1)

Step :- 2

  • Right Hand Limit at x = 2

\rm :\longmapsto\:\displaystyle\tt \:\lim_{x\to2^ + } \:f(x)

 \rm \:  \:  =  \:  \:  \: \displaystyle\tt \:\lim_{x\to2^ + } \:(2x - 3)

  \bigg\{ \red{ \bf \: Put \: x \:  =  \: 2 + h} \\   \red{\rm \: As \: x \to \: 2 \implies \: h \to \: 0}  \bigg\}

 \rm \:  \:  =  \:  \:  \: \displaystyle\tt \:\lim_{h\to0} \:(2(2 + h) - 3)

 \rm \:  \:  =  \:  \:  \: \displaystyle\tt \:\lim_{h\to0} \:(4 + 2h - 3)

 \rm \:  \:  =  \:  \:  \: \displaystyle\tt \:\lim_{h\to0} \:(1 + 2h)

 \rm \:  \:  =  \:  \:  \: 1 -  -  - (2)

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\:f(2) \:  \ne \:  \: \tt \:\lim_{x \: \to \: 2^ + }

\bf\implies \:f(x) \: is \: not \: continuos \: at \: x = 2

\bf\implies \:only \: one \: point \: of \: discontinuity.

Additional Information :-

1. If f and g are two continuous function at x = a, then

  • f + g is continuous at x = a.

  • f - g is continuous at x = a.

  • f×g is continuous at x = a

  • fog is continuous at x = a.

2. Every differentiable function is always continuous but continuous function may or may not be differentiable.

3 Every sine, cosine function is always continuous on R.

Similar questions