Math, asked by Anonymous, 8 months ago

 \large\sf Prove \:  that: \\  \\ \  \textless \ br /\  \textgreater \  \tt (1+  { \cot}^{2} )(1+ \cos A)(1- \cos A)=1

Answers

Answered by amansharma264
87

EXPLANATION.

 \sf \: equation \: are \\  \\  \sf : \implies \:  (1 +  { \cot }^{2}A)(1 +   \: \cos \: A)  (1 -  \cos \: A)  = 1

 \sf  :  \implies \:  1 +  \cot {}^{2} (A) =  \csc {}^{2} (A) \\  \\  \sf : \implies \: 1 -  \cos {}^{2} (A) =  \sin {}^{2} (A) \\  \\  \sf : \implies \: using \: identity \:  = (x  + y)(x - y) = ( {x}^{2} -  {y}^{2} )

 \sf :  \implies \: (1 +  \cot {}^{2} A)(1 -  \cos \:A )(1 +  \cos \: A) \\  \\  \sf : \implies \: ( \csc {}^{2}  A)(1 -  \cos {}^{2} A)   \\  \\  \sf : \implies \:  \frac{1}{ ( \cancel{\sin {}^{2}  \:A ) }} \times   \cancel{\sin \:  {}^{2} A}  = 1

 \sf : \implies \:  \green{{ \underline{some \: related \: formula}}}  \\  \\  \sf : \implies \:  \sin {}^{2} ( \theta) +  \cos {}^{2} ( \theta) = 1 \\  \\   \sf : \implies \: 1 +  \tan {}^{2} ( \theta)   =  \sec {}^{2} ( \theta)  \\  \\  \sf  \implies \: 1 +  \cot {}^{2} ( \theta) =  \csc {}^{2} ( \theta)

  \sf : \implies \: 1 -  \cos(2 \theta) = 2 \sin {}^{2} ( \theta) \\  \\    \sf : \implies \: 1 +  \cos( 2\theta) = 2 \cos {}^{2} ( \theta)  \\  \\   \sf : \implies \: 1 -  \sin(2 \theta)  = ( \cos\theta \:  -  \sin\theta) {}^{2} \\  \\   \sf : \implies \: 1 +  \sin(2 \theta)    = ( \cos \theta +   \sin \theta) {}^{2}

Answered by Anonymous
70

\bf{\underline{\large{\: To \: Prove }}}\\ \\ \bf{ \bigstar \: (1 + { \cot }^{2}A)(1 + \: \cos \: A) (1 - \cos \: A) = 1}

Taking L.H.S

 \rm  \longrightarrow \: (1 + \cot {}^{2} A)(1 - \cos \:A )(1 + \cos \: A)

 \underline{ \boxed{ \sf{Using \: identity \: = (x + y)(x - y) = ( {x}^{2} - {y}^{2} )}}} \\  \\ \rm \longrightarrow \: ( 1 + \cot {}^{2} A)(1 - \cos {}^{2} A)

  \underline{\frak{We \: know \: that \: }}\begin{cases}  \sf  \bullet \: 1 + cot {}^{2} (A) = csc {}^{2} (A) \\ \sf  \bullet \: 1 - cos {}^{2} (A) = sin {}^{2} (A)  \\   \sf \: \bullet \: csc  (A) =  \dfrac{1}{sin(A)}  \end{cases}

\rm{  \longrightarrow \: csc {}^{2} A \times \sin \: {}^{2} A }  \\  \\ \rm  \longrightarrow \: \dfrac{1}{ ( \cancel{\sin {}^{2} \:A ) }} \times \cancel{\sin \: {}^{2} A}  \\  \\ \rm  \longrightarrow \: 1

L.H.S = R.H.S ( HENCE PROVED )

Similar questions