Physics, asked by PsychoBaby, 6 months ago

\large{\sf{Question :}}
Evaluate \sf\int\dfrac{\cot\:x}{\sin\:x}dx

Answers

Answered by Anonymous
18

Question :

Evaluate

\sf\int\dfrac{\cot\:x}{\sin\:x}dx

Answer :

We have to evaluate :

\sf\int\dfrac{\cot\:x}{\sin\:x}dx

\sf\int\dfrac{\cos\:x}{\sin^2x}dx

Let \sf\:sin\:x=t

Now, Differentiate it with respect to x

\sf\implies\dfrac{dt}{dx}=\cos\:x

\sf\implies\:dt=\cos\:x\:dx

Then,

\sf\int\dfrac{\cos\:x}{\sin^2x}dx

\sf=\int\dfrac{\cos\:x}{t^2}\times\dfrac{dt}{\cos\:x}

\sf=\int\dfrac{dt}{t^2}

\sf=\int\:t^{-2}dt

We know that

\sf\int\:x^n=\dfrac{x^{n+1}}{n+1}

Then,

\sf=\dfrac{t^{-2+1}}{-2+1}+c

\sf=-t^{-1}+c

\sf=\dfrac{-1}{t}+c

\sf=\dfrac{-1}{\sin\:x}+c

It is the required solution..

Answered by OoINTROVERToO
1
  •  \tt\int\dfrac{\cot\:x}{\sin\:x}dx

  •  \tt\int\dfrac{\cos\:x}{\sin^2x}dx

Let sin x = t

Now, Differentiate it with respect to x

  • \rm \implies\dfrac{dt}{dx}=\cos\:x

  •  \rm \implies\:dt=\cos\:x\:dx

  • \tt→\int\dfrac{\cos\:x}{\sin^2x}dx

  • \tt→\int\dfrac{\cos\:x}{t^2}\times\dfrac{dt}{\cos\:x}

  • \tt→\int\dfrac{dt}{t^2}

  • \tt→\int\:t^{-2}dt

We know that

  • \sf\int\:x^n=\dfrac{x^{n+1}}{n+1}

Then,

  •  \tt→\dfrac{t^{-2+1}}{-2+1}+c

  • \tt→-t^{-1}+c

  • \tt→\dfrac{-1}{t}+c

  • \tt→\dfrac{-1}{\sin\:x}+c
Similar questions