Math, asked by BrainlyElon, 19 days ago

\large{\sf \red{Hello\ Brainlians\ !}}
\bf{Evaluate\ the\ integral\ ,}
\displaystyle \rm \int \dfrac{1+e^x}{1-e^x}\ dx

Answers

Answered by BrainlyIAS
40

Problem :

\bullet\ \; \; \displaystyle \red{ \sf \int \dfrac{1+e^x}{1-e^x}\ dx }

Solution :

\displaystyle \sf \int \dfrac{1+e^x}{1-e^x}\ dx

⇒ \sf \displaystyle \sf \int \dfrac{1+e^x+e^x-e^x}{1-e^x}\ dx

⇒ \sf \displaystyle \sf \int \dfrac{1-e^x+2e^x}{1-e^x}\ dx

⇒ \sf \displaystyle \sf \int \left( \dfrac{1-e^x}{1-e^x} + \dfrac{2e^x}{1-e^x} \right) dx

⇒ \sf \displaystyle \sf \int  \dfrac{1-e^x}{1-e^x}\ dx -2 \int \dfrac{(-e^x)}{1-e^x}\ dx

⇒ \sf \displaystyle \sf \int  dx -2 \int \dfrac{(-e^x)}{1-e^x}\ dx

2nd integral resembles ∫ f'(x)/f(x) dx = ㏑ f(x)

\longrightarrow \bf x-2 \ln (1-e^x)+c


amansharma264: Perfect
BrainlyIAS: Thanks ! ❣️
Answered by 1987shyamsundargoswa
11

Correct option is

C

Statement -I is False; Statement -II is True

I=∫π/6π/31+tanxdx

I=∫π/6π/31+tanxtanxdx

2I=6π

I=12π

Therefore, I is false and II is true.

Hence, option 'C' is correct.

Similar questions