Math, asked by Anonymous, 5 hours ago

 \large  \sf\red{ - \sum \limits_{i = 1}^{461} ( - 1)^{i}  ( \frac{5! \times 5}{4!} ) ^{ \frac{1}{2} } }

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} \bigg( \dfrac{5! \times 5}{4!} \bigg) ^{ \dfrac{1}{2} } }

can be rewritten as

 \rm \:  =  \:  \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} \bigg( \dfrac{5 \times 4! \times 5}{4!} \bigg) ^{ \dfrac{1}{2} } }

 \rm \:  =  \:  \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} \bigg( \dfrac{5  \times 5}{1} \bigg) ^{ \dfrac{1}{2} } }

 \rm \:  =  \:  \sf{ - \sum \limits_{i = 1}^{461}5 ( - 1)^{i}}

 \rm \:  =  \:  \sf{ - 5\sum \limits_{i = 1}^{461} ( - 1)^{i}}

 \rm \:  =  \:  - 5\bigg[ - 1 +  {( - 1)}^{2} +  {( - 1)}^{3}  +  -  -  - 461 \: terms \bigg]

So, its a Geometric progression with first term, a = - 1 and common ratio, r = - 1 and number of terms, n = 461.

So, using sum of n terms of GP series, we get

 \rm \:  =  \:  - 5\bigg[\dfrac{ - 1[ {( - 1)}^{461}  - 1]}{ - 1 - 1} \bigg]

 \rm \:  =  \:  5\bigg[\dfrac{  - 1  - 1}{ -2} \bigg]

 \rm \:  =  \:  5\bigg[\dfrac{ - 2}{ -2} \bigg]

 \rm \:  =  \: 5

Hence,

\rm :\longmapsto\: \boxed{\tt{  \: \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} \bigg( \dfrac{5! \times 5}{4!} \bigg) ^{ \dfrac{1}{2} } } =  5 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

↝ Sum of n  terms of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a( {r}^{n}  - 1)}{r - 1} \: provided \: that \: r \:  \ne \: 1}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of GP..

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Answered by XxitzZBrainlyStarxX
16

Question:-

 \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} ( \frac{5! \times 5}{4!} ) ^{ \frac{1}{2} } }

Given:-

 \sf{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} ( \frac{5! \times 5}{4!} ) ^{ \frac{1}{2} } }

Solution:-

\sf \: S = \bigg [ { - \sum \limits_{i = 1}^{461} ( - 1)^{i} ( \frac{5! \times 5}{4!} ) ^{ \frac{1}{2} } } \bigg]

 \sf \therefore \: S = -  \sum \limits_{i = 1} ^{461}   \bigg[( - 1) {}^{i } \:  \: 5  \bigg]  \sf = ( - 5)  \bigg[   \sum \limits_{i = 1} ^{461} ( - 1) \:  {}^{i} \bigg ]

 \sf \therefore S =  - ( - 5) \times [ - 1 + 1 - 1 + 1 - 1 + .... \: 461 \: terms ]

\sf \therefore   \:S = ( - 5) \times [0 - 1] = ( - 5) \times ( - 1) = 5

Answer:-

 \sf\red{ - \sum \limits_{i = 1}^{461} ( - 1)^{i} ( \frac{5! \times 5}{4!} ) ^{ \frac{1}{2}  } = 5 }

Hope you have satisfied.

Similar questions