Physics, asked by Anonymous, 2 months ago

  \large\sf \underline{question} \\
Derivate the 2nd equation of motion, by graphical method.

Note!
Spammed answer(s) will be deleted on the spot ! ​

Answers

Answered by BrainlyShadow01
19

\underline{\underline {\sf{\maltese \: \: Derivation \: \: of \: \: 2nd \: \: equation \: \: of \: \: motion }}}:

Here ,

  • \tt \: initial \: velocity = u

  • \tt \: final \: velocity = v

  • \tt \: acceleration = a

  • \tt \: distance = s

  • \tt \: time = t

Now ,

\tt\implies \: Distance \: covered = Area \: covered \: in \: the \: figure

\tt\implies \: Area \: of \: OABC = Area \: of \: OADC + Area \: of \: ABD

\tt\implies \: s = ( OA \times OC ) + ( \dfrac { 1 } { 2 } \times AD \times BD )

\tt\implies \: s = ( ut ) + ( \dfrac { 1 } { 2 } \times { at }^{ 2 } )

\tt\implies \: s = ut + \dfrac { 1 } { 2 } \times { at }^{ 2 }

Attachments:
Answered by TheBrainlyStar00001
34

 \Large \underline{\tt{\underline{ ✰ \: Tᴏ \: Dᴇʀɪᴠᴀᴛᴇ \:  :  - }}}\\\\

 \qquad  \:  \tt{ \underline{❖\:\:Sᴇᴄᴏɴᴅ\: ᴇǫᴜᴀᴛɪᴏɴ\:ᴏғ \: ᴍᴏᴛɪᴏɴ \:ʙʏ\:ɢʀᴀᴘʜɪᴄᴀʟ\:ᴍᴇᴛʜᴏᴅ.}}\\\\

 \Large \underline{\tt{\underline{ ✰ \: Exᴘʟᴀɴᴀᴛɪᴏɴ \:  :  - }}}\\\\

\large \underline{ \frak{✠\:Lᴇᴛ, \:   :  - }} \begin{cases}\sf{\bullet\:(u)\:=\:Iɴɪᴛɪᴀʟ\: Vᴇʟᴏᴄɪᴛʏ\:ᴀᴛ\:(t\:=\:0)\:=\:OA}\\ \sf{\bullet\:(v)\:=\:Fɪɴᴀʟ\: Vᴇʟᴏᴄɪᴛʏ\:ᴀᴛ\:(t\:=\:t)\:=\:BC}\\ \sf{\bullet\:(t)\:=\:Tɪᴍᴇ\:=\:OC}\\ \sf{\bullet\:(a)\:=\:Aᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ}\\ \sf{\bullet\:(s)\:=\:Dɪsᴛᴀɴᴄᴇ\:Cᴏᴠᴇʀᴇᴅ\:ᴀᴛ\:(t\:=\:t)} \end{cases}\\\\

\tt  \underline{ : \implies{Distance \: covered \: (s) \: at \: time \: (t \:  =  \: t)      \implies \: Area \: of \: figure \: \bf (OABC) }} \\\\    \underline{ \tt  : \implies{Distance \: covered \: (s) \: at \: time \: (t \:  =  \: t)     \implies \: Area \: of \: figure \: \bf (OADC) \:  + \tt  \:Area \: of \: figure \:  \bf(ABD)   }}\\\\

 \sf  : \implies \: s   \:    = (OA \:  \times \: OC) \:  +  \: ( \dfrac{1}{2}  \:  \times \: AD \: \times \: BD) \\\\ \sf  : \implies \: s   \:    = (u \:  \times \: t) \:  +  \: ( \dfrac{1}{2}  \:  \times \: t \: \times \: at) \\\\  \bigstar\:\underline{ \boxed{  : \implies { \purple{ \frak{\: s \:  =  \: ut \:  +   \:  \frac{1}{2} \: at {}^{2}  }}}}}\:\bigstar \\  \\

 \underline{ \boldsymbol { \therefore \: Hence,} \rm \:  the \: second \: equation \: of \: motion, \: is \: derived \: by \: graphical \:method.}

Attachments:
Similar questions