Math, asked by goodquestionsonlyher, 3 days ago

\large\text{$f(x)$} is a quadratic function. Another function \large\text{$g(x)$} satisfies g(x)=\int\{x^{2}+f(x)\}dx and f(x)g(x)=-2x^{4}+8x^{3}.
Find \large\text{$g(1).$}

Answers

Answered by user0888
8

\Huge\text{$\cdots\longrightarrow\boxed{\bold{g(1)=2.}}$}

\Large\text{\boxed{\bold{[Topic: Integration]}}}

Let's compare the degrees of different functions. Let us denote the degree of \large\text{$f(x)$} by \large\text{$deg(f)$}. Then, -

\large\text{$\cdots\longrightarrow deg(f)=2.\ \cdots\text{[Eqn.1]}$}

\large\text{$\cdots\longrightarrow deg(fg)=4.\ \cdots\text{[Eqn.2]}$}

\large\text{$\displaystyle\cdots\longrightarrow deg(g)=deg(\int \{x^{2}+f(x)\}\ dx).\ \cdots\text{[Eqn.3]}$}

We know that -

\large\text{$\cdots\longrightarrow deg(fg)=deg(f)+deg(g).$}

Hence, in [Eqn.2], -

\large\text{$\cdots\longrightarrow\boxed{deg(g)=2.}$}

Then, in [Eqn.3], -

\large\text{$\cdots\longrightarrow\boxed{deg(\int \{x^{2}+f(x)\}\ dx)=2.}$}

Integrated functions have degrees 1 higher. Hence, -

\large\text{$\cdots\longrightarrow\boxed{deg(\{x^{2}+f(x)\})=1.}$}

\Large\text{\boxed{\bold{[Explanation]}}}

We know that -

\large\text{$f(x)=-x^{2}+ax+b,$}

because of -

\large\text{$\cdots\longrightarrow\boxed{deg(\{x^{2}+f(x)\})=1}$}

We can refer to the product of two functions.

\large\text{$f(x)g(x)$} factorizes to \large\text{$-2x^{3}(x-4)$}.

Since we know the leading term of \large\text{$f(x)$}, the remaining cases are -

\text{$\cdots\longrightarrow\begin{cases} & f(x)=-x^{2} \\  & g(x)=2x(x-4) \end{cases}\text{ or }\begin{cases} & f(x)=-x(x-4) \\  & g(x)=2x^{2}. \end{cases}$}

\Large\text{\boxed{\bold{[Case\ A.]}}}

Considering the indefinite integral \large\text{$\int \{x^{2}+f(x)\}\ dx$}, -

\large\text{$\cdots\longrightarrow\displaystyle\int \{x^{2}+f(x)\}\ dx=\int0\ dx=C.$}

But, -

\large\text{$\cdots\longrightarrow g(x)\neq C.$}

Hence Case A is false.

\Large\text{\boxed{\bold{[Case\ B.]}}}

Considering the indefinite integral \large\text{$\int \{x^{2}+f(x)\}\ dx$}, -

\large\text{$\cdots\longrightarrow\displaystyle\int \{x^{2}+f(x)\}\ dx=\int4x\ dx=2x^{2}+C.$}

And, -

\large\text{$\cdots\longrightarrow g(x)=2x^{2}.$}

Hence Case B is confirmed.

\Large\text{\boxed{\bold{[Final\ answer]}}}

We know that, -

\large\text{$\cdots\longrightarrow\boxed{g(x)=2x^{2}.}$}

Hence, -

\Large\text{$\cdots\longrightarrow \boxed{\bold{g(1)=2.}}$}

Similar questions