Math, asked by itzsecretagent, 1 month ago


\large{ \textsf{ \textbf{ \color{li}{QUESTION}}}}
Show that :-
 \sf \:   {sin}^{8}  \theta -  {cos}^{8} \theta  = (1 - 2 {cos}^{2}  \theta)(1 - 2 {sin}^{2}  \theta \:  {cos}^{3}  \theta)

\small{ \textsf{ \textbf{ \color{li}{ Don't spam here}}}}

Answers

Answered by Anonymous
13

 \:   \Large{ \underline{ \underline{ \dag  \:  \:  \:  \:  \:  \: \:  \:  \: { \mathfrak{\red{Solution }}}} \:  \: }}_{ \bigstar \star}\\ \\

 \dashrightarrow \:  \: \bf \: {sin}^{8} (\theta) - {cos}^{8} (\theta  )\\  \\

 \dashrightarrow \:  \: \sf \:  \big({ \sin {}^{4} ( \theta) } \big)^{2}  - \big({ \cos{}^{4} ( \theta) } \big)^{2} \\  \\

\dashrightarrow \:  \: \sf  \big({ \sin {}^{4} ( \theta) } + { \cos {}^{4} ( \theta) } \big) \big({ \sin {}^{4} ( \theta) } - { \cos {}^{4} ( \theta) } \big) \\  \\

\dashrightarrow \:  \: \sf   \bigg(\big({ \sin {}^{2} ( \theta) } + { \cos {}^{2} ( \theta) } \big) {}^{2}   - 2 { \sin^{2}( \theta) }  \cos {}^{2} ( \theta)  \bigg)\bigg({ \sin {}^{2} ( \theta) }  +  { \cos {}^{2} ( \theta) } \bigg)\bigg({ \sin {}^{2} ( \theta) }   -  { \cos {}^{2} ( \theta) } \bigg) \\  \\

\dashrightarrow \:  \: \sf   \bigg(1   - 2 { \sin^{2}( \theta) }  \cos {}^{2} ( \theta)  \bigg)\bigg(1 - { \cos{}^{2} ( \theta) }   -  { \cos {}^{2} ( \theta) } \bigg) \\  \\

\dashrightarrow \:  \blue{\frak{ \bigg(1   - 2 { \sin^{2}( \theta) }  \cos {}^{2} ( \theta)  \bigg)\bigg(1   - 2 { \cos {}^{2} ( \theta) } \bigg) }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \: proved.\\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \colorbox{black}{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: }

Answered by Anonymous
67

LHS = RHS

(Hence Proved)

Step-by-step explanation:

Refer attachment.

Attachments:
Similar questions