Math, asked by xccm, 1 year ago

\Large{\textsf{\underline{Please Answer the Question.}}}

<b><u>Note :</b></u>

• Given in Attachment.​

Attachments:

Answers

Answered by Anonymous
52

Solution:

Let the number be 'x'.

Subtracting \sf{\frac{1}{2}} from the number:

\implies \boxed{\sf{x -  \frac{1}{2}}}

Now,

According to the problem given,

Subtract 1/2 from a number and multiply the result by 1/2, you get 1/8.

So:

\sf{(x -  \frac{1}{2} ) \times  \frac{1}{2}  =  \frac{1}{8}}

\implies \sf{(x -  \frac{1}{2} ) =  \frac{1}{8}  \times  \frac{2}{1}}

\implies \sf{x -  \frac{1}{2}  =  \frac{1}{4}}

\implies \sf{x =  \frac{1}{4}  +  \frac{1}{2}}

\implies \sf{x =  \frac{(1 + 2)}{4}}

\implies \sf{x =  \frac{3}{4}}

Therefore,

Required number (x) = \sf{\frac{3}{4}}

Answered by BrainlyPrince92
14

 \Large{\mathfrak{\underline{Answer:}}} \\ \\ \sf \frac{3}{4} \\ \\ \Large{\mathfrak{\underline{Step-by-step \: explanation:}}} \\ \\ \textsf{Let the number be x.} \\ \\ \textrm{ATQ,} \\ \\ \sf (x - \frac{1}{2}) × \frac{1}{2} = \frac{1}{8} \\ \sf ⇒ \frac{x}{2} - \frac{1}{4} = \frac{1}{8} \\ \sf ⇒ \frac{x}{2} = \frac{1}{8} + \frac{1}{4} \\ \sf ⇒ \frac{x}{2} = \frac{1}{8} + \frac{2}{8} \\ \sf ⇒ \frac{x}{2} = \frac{(1+2)}{8} \\ \sf ⇒ x = \frac{3}{8} × 2 \\ \sf ⇒ x = \frac{6}{8} \\ \sf ⇒ x = \frac{3}{4} \\ \\ \large \sf \underline{\boxed{\sf Thanks ..!!!}}

Similar questions