Math, asked by domain12I11, 3 months ago


]\Large{\underbrace{\sf{\orange{Question:}}}}[ Refer to the attached picture! :) ]______________\large{\underline{\bf{Source}}} - Class 9th, R.D. Sharma Mathematics Book...[/tex]


please give it correct ...i will mark brainlist..​

Attachments:

Answers

Answered by TheDiamondBoyy
7

\Large{\underbrace{\underline{\bf{QUESTION\:}}}}: \\

Find the value of 'p'.

\dagger\:\bf\red{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\ \\

\Large{\underbrace{\underline{\bf{ANSWER\:}}}}: \\

{\bf{Given\::}} \\

\red\checkmark\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\

 \\ {\bf{To\: Find\::}} \\

The value of 'p'.

 \\ {\bf{Properties\::}} \\

\dagger\:\bf\blue{a^{1}\:=\:a\:} \\

\dagger\:\bf\purple{a^{0}\:=\:1\:} \\

 \\ {\bf{Solution\::}} \\

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\

☛ We also write as,

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\times{1}\:} \\

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5^{1}\times{2^{0}}\:} \\

☛ Compare both sides, we get

:\implies\:\tt{5^{(p\:-\:5)}\:=\:5^{1}\:~~~\&\:~~~\:{2^{(p\:-\:5)}}\:=\:2^{0}\:} \\

:\implies\:\tt{p\:-\:5\:=\:1\:~~~Or\:~~~\:p\:-\:5\:=\:0\:} \\

:\implies\:\tt{p\:=\:1\:+\:5\:~~~Or\:~~~\:p\:=\:0\:+\:5\:} \\

:\implies\:{\tt{\green {p\:=\:6}}}\:~~~Or\:~~~\:{\tt{\green {p\:=\:5}}}\: \\

Answered by jeffwin18
1

Answer:

Hi Mate

Step-by-step explanation:

Your answer is in the attachment ☝☝

Have a great day ahead!!

Attachments:
Similar questions