Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 1 day ago


  \large\underline{ \bf{Question:- }}
 \:  \:  \:  \:  \:  \:  \:  \:  \displaystyle \int \sf{ \frac{x {}^{2} }{ \sqrt{x {}^{2} \:  + \:  25 } } \: dx }
[Solve it ]

Answers

Answered by testingpurpose152001
18

Answer:

Step-by-step explanation:

∫(x²/\sqrt{x^2 +25}) dx

= ∫((x² +25) -25)/\sqrt{x^2 +25} dx

= ∫((\sqrt{x^2 +25}) - 25/\sqrt{x^2 +25}) dx

=∫ \sqrt{x^2 +25} dx - ∫ 25/\sqrt{x^2 +25} dx

= (x/2)\sqrt{x^2 +25} + (25/2) logl x +\sqrt{x^2 +25}l  - 25 logl x+\sqrt{x^2 +25}l  +c

= (x/2)\sqrt{x^2 +25}  -(25/2) logl x +\sqrt{x^2 +25}l +c

Answered by Okhey
11
  • Refer to the attachment ✅
Attachments:
Similar questions