Math, asked by Gripex, 1 month ago

\large\underline{\bold{Given \:Question - }}

See Above ​

Attachments:

Answers

Answered by Anonymous
62

   \:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Solution    :- }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

Formula :-

  •  \sf\red { \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )}

 \sf \: Here, \: we \: are \: asked \: to \:resolve \:  into  \: partial \:  fraction :  \: \dfrac{x}{ {x}^{3}  + 1}

 \sf\: \dfrac{x}{ {x}^{3}  + 1}  = \sf \:  \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }\\\\

 \sf \: Let \:  \: \red { \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }  = \sf \:  \dfrac{a}{x + 1}  + \dfrac{bx + c}{ {x}^{2} - x + 1 } } -  - (1)\\

 \sf \: x \:  = a( {x}^{2}  - x + 1) + (bx + c)(x + 1) -  - (2)\\

\sf :\implies \: - 1 = a(1 + 1 + 1) + 0\\

\sf :\implies \: - 1 = 3a\\

\sf:\implies \red {\:a \:  =  \:  -  \: \dfrac{1}{3}  -  - (3)}\\\\

On substituting 'x = - 0' in equation (2), we get :-

\sf :\implies\: 0 = a(0 - 0 + 1) + c(0 + 1)\\

\sf :\implies \:a + c = 0\\

\sf :\implies\:c =  -  \: a\\

\sf:\implies \red {\:\:c \:  =  \: \dfrac{1}{3}  -  - (4)}\\\\

❍On substituting 'x = 1' in equation (2), we get :-

\sf :\implies \:1 = a(1 - 1 + 1) + (b + c)(2)\\

\sf :\implies \:1 = a + 2b + 2c\\

\sf :\implies \:1 =  -  \: \dfrac{1}{3}  + \dfrac{2}{3}  + 2b\\

\sf :\implies \:1 = \dfrac{1}{3}  + 2b\\

\sf :\implies \:2b = 1 - \dfrac{1}{3} \\

\sf :\implies \:2b = \dfrac{2}{3}\\

\sf:\implies \red {\:b \:  =  \: \dfrac{1}{3}  \:  -  - (5)}\\

❍Now, substitute the values..

 \sf  \:  \:  \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }  = \sf \:  \dfrac{ - 1}{3(x + 1)}  + \dfrac{x + 1}{3( {x}^{2} - x + 1) }\\

 \sf  \:  \:  \purple{\dfrac{x}{ {x}^{3}  + 1 } } = \sf \pink {\:  \dfrac{ - 1}{3(x + 1)}  + \dfrac{x + 1}{3( {x}^{2} - x + 1) }}\\\\

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━⠀

\sf \green {Do \: you \: know \:?¿}

  • Partial fraction decomposition is the breaking down of a rational expression into simpler parts. It is the opposite of adding rational expressions. When adding two rational expressions, there has to be a common denominator.

\begin{gathered}\boxed{\begin{array}{c|c} \sf \pink { Term \: in \: denominator }& \sf\pink { Partial \: fraction \: decomposition }\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ax + b & \sf \displaystyle \sf \dfrac{A}{{ax + b}} \\ \\ \sf  {(ax + b)}^{2}  & \sf \displaystyle \sf \dfrac{{{A_1}}}{{ax + b}} + \sf\frac{{{A_2}}}{{{{\sf\left( {ax + b} \right)}^2}}}  \\ \\ \sf  {ax}^{2} + bx + c  & \sf \displaystyle \sf \dfrac{{Ax + B}}{{a{x^2} + bx + c}} \end{array}} \\ \end{gathered}

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━⠀


BrainlyPopularman: Awesome
Answered by RISH4BH
150

To Do :-

  • To resolve \sf\dfrac{x}{x^3+1} into partial fractions .

SolutioN :-

The process of expressing a proper fraction as a sum of two or more proper fraction is called resolving it into Partial Fractions.

Here the fraction given to us is ,

\sf\to \pink{\dfrac{x}{x^3+1}}

Here the degree of denominator is greater than the degree of numerator . Hence the fraction is Proper Fraction and we can resolve it into Partial fractions .

• Assume that ,

\dashrightarrow \sf \dfrac{x}{(x+1)(x^2 - x + 1 )}= \dfrac{A}{x+1} + \dfrac{Bx + C }{x^2-x+1} \\\\\sf\dashrightarrow \dfrac{x}{(x+1)(x^2 - x + 1 )}= \dfrac{A(x^2-x+1)+ (Bx+C)(x+1)}{(x^2-x+1)(x+1)} \\\\ \qquad\qquad\tiny{\underline{\dag\red{ \sf On \ comparing \ we \ have }}} \\\\\sf\dashrightarrow x = A(x^2-x+1) +( Bx+C)(x+1) \\\\\sf\qquad\qquad\tiny{\underline{\dag\red{ \sf Substituting \ x \ = \ (-1) . }}} \\\\\sf\dashrightarrow    -1 = A[ (-1)^2-(-1)+1] + (Bx+C)(x-1) \\\\\sf\dashrightarrow -1 = A( 1+1+1)+ 0 \\\\\sf\dashrightarrow -1 = 3A \\\\\sf\dashrightarrow\boxed{\pink{\sf A =\dfrac{-1}{3}}}

\rule{200}2

\qquad\qquad \tiny{\underline{\dag\red{ \sf Substituting \ x \ = \ (0) . }}} \\\\\sf\dashrightarrow  0 = A( 0 -0+1)+[ (B)(0)+ C ]  \\\\\sf\dashrightarrow0 = A + C  \\\\\sf\dashrightarrow \dfrac{-1}{3}+C = 0 \qquad\bigg\lgroup \red{\tt From \ above }\bigg\rgroup  \\\\\sf\dashrightarrow \boxed{\pink{\sf C =\dfrac{1}{3}}}

\rule{200}2

Comparing the co - efficients of x² on both sides of the equation we have ,

\sf\dashrightarrow A + B = 0 \\\\\sf\dashrightarrow \dfrac{-1}{3}+B = 0 \\\\\sf\dashrightarrow \boxed{\pink{\sf B =\dfrac{1}{3}}}

\rule{200}2

\red{\bigstar}\underline{\textsf{ Put on the respective values :- }}

\sf \to  \dfrac{A}{x+1} + \dfrac{Bx + C }{x^2-x+1} \\\\\sf\to \dfrac{\frac{-1}{3}}{x+1} + \dfrac{\frac{1}{3}x+\frac{1}{3}}{x^2-x+1} \\\\\sf\to\dfrac{-1}{3(x+1)} + \dfrac{\frac{1+x}{3}}{x^2-x+1} \\\\\sf\to \underset{\blue{\sf Required \ Partial \ Fraction }}{\underbrace{\boxed{\pink{\sf{\dfrac{-1}{3(x+1)}+\dfrac{1+x}{3(x^2-x+1)}}}}} }

\rule{200}2

\large\red{\bigstar}\underline{\textsf{ More To Know :- }}

Let us assume a fraction ( proper ) , \sf \dfrac{f(x)}{g(x)}

T Y P E - 1 :-

When g(x) has non repeated linear fractions only , then there exists a corresponding partial fraction in the form of

\to \sf\red{ \dfrac{A}{ax+b}}

________________________________

T Y P E - 2 :-

When g(x) has some repeated linear factors and the remaining are non repeated linear factors .

\sf Let \ g(x) = (px+q)^n(a_{1}x+a_{1})(a_{2}x+a_2).. . . . (a_n x +a_1)

Then for corresponding linear factor ,

\sf\to \red{\dfrac{A_1}{px+q},\dfrac{A_2}{(px+q)^2}, ... ..,\dfrac{A_n}{(px+q)^n} }

Then for corresponding non-linear repeated Fractions ,

\sf\to \red{\dfrac{B_1}{a_1x+a_1},\dfrac{B_2}{a_2x+a_2}, ... ..,\dfrac{B_n}{a_nx+a_n} }

For example of this type refer to the attachment.

________________________________

T Y P E - 3 :-

When g(x) contains non - repeated non - reducible factors in form of a quadratic equation. that is p + qx + c . The Partial Fraction for this type is ,

\sf\to\red{ \dfrac{Ax + B }{px^2+qx+c}}

where p , q , A and B belong to Real Numbers .

Attachments:

BrainlyPopularman: Nice
Similar questions