ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD,
DA respectively. Show that the quadrilateral PQRS is a rectangle.
Answers
Data : ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.
To prove : PQRS is a rectangle.
Construction : Diagonals AC and BD are drawn.
Proof : To prove PQRS is a rectnagle, one of its angle should be right angle.
In ∆ADC, S and R are the mid points of AD and DC.
∴ SR || AC
SR = 1212AC (mid-point formula)
In ∆ABC, P and Q are the mid points AB and BC.
∴ PQ || AC PQ = ½AC.
g ∴ SR || PQ and SR = PQ
∴ PQRS is a parallelogram.
But diagonals of a rhombus bisect at right angles. 90° angle is formed at ‘O’.
∴ ∠P = 90°
∴ PQRS is a parallelogram, each of its angle is right angle.
This is the property of rectangle.
∴ PQRS is a rectangle.
Hᴏᴘᴇ Tʜɪs Hᴇʟᴘs Yᴏᴜ
ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.
⠀
PQRS is a rectangle.
⠀
Join AC and BD.
⠀
In ΔDRS and ΔBPQ,
DS = BQ (Halves of the opposite sides of the rhombus)
∠SDR = ∠QBP (Opposite angles of the rhombus)
DR = BP (Halves of the opposite sides of the rhombus)
Thus, ΔDRS ≅ ΔBPQ by SAS congruence condition.
RS = PQ by CPCT --- (i)
In ΔQCR and ΔSAP,
RC = PA (Halves of the opposite sides of the rhombus)
∠RCQ = ∠PAS (Opposite angles of the rhombus)
CQ = AS (Halves of the opposite sides of the rhombus)
Thus, ΔQCR ≅ ΔSAP by SAS congruence condition.
RQ = SP by CPCT --- (ii)
Now,
In ΔCDB,
R and Q are the mid points of CD and BC respectively.
- QR || BD
also,
P and S are the mid points of AD and AB respectively.
- PS || BD
- QR || PS
Thus, PQRS is a parallelogram.
also, ∠PQR = 90°
Now,
In PQRS,
RS = PQ and RQ = SP from (i) and (ii)
∠Q = 90°
Thus, PQRS is a rectangle.