Math, asked by King412, 1 day ago


 \large ✯ \underline{\large\sf  \pink{Question :- }}


Prove that

 \\  \sf \: \:  \:  \:  \:  \:  \:   \cos ^{2} (x)  +  { \cos }^{2}  \bigg(x +  \dfrac{\pi}{3} \bigg) + { \cos }^{2}  \bigg(x  -  \dfrac{\pi}{3} \bigg) =  \frac{3}{2}  \\


Don't spam , pehale hi mood kharab hai -,- ​

Answers

Answered by amansharma264
83

EXPLANATION.

\sf \implies cos^{2} x + cos^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + cos^{2} \bigg(x - \dfrac{\pi}{3} \bigg) = \dfrac{3}{2}

As we know that,

Formula of :

⇒ cos2x = 2cos²x - 1.

⇒ cos2x + 1/2 = cos²x.

⇒ cos²(x + π/3).

⇒ cos2(x + π/3) + 1/2.

⇒ cos(2x + 2π/3) + 1/2.

⇒ cos²(x - π/3).

⇒ cos2(x - π/3) + 1/2.

⇒ cos(2x - 2π/3) + 1/2.

Put this formula in equation, we get.

\sf \implies \dfrac{1 + cos2x}{2} \ + \dfrac{cos\bigg(2x + \dfrac{2\pi}{3} \bigg) + 1}{2} \ + \dfrac{cos \bigg(2x - \dfrac{2\pi}{3}\bigg) + 1}{2}

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos2x + cos\bigg(2x + \dfrac{2\pi}{3} \bigg) + cos \bigg(2x - \dfrac{2\pi}{3} \bigg)\bigg]

As we know that,

Formula of :

\sf \implies cos(x) + cos(y) = 2 \ cos \bigg(\dfrac{x + y}{2} \bigg) . cos \bigg(\dfrac{x - y}{2} \bigg)

Using this formula in equation, we get.

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos 2x + 2 cos \bigg( \dfrac{2x + \dfrac{2\pi}{3}  + 2x - \dfrac{2\pi}{3} }{2} \bigg) . cos \bigg( \dfrac{2x + \dfrac{2\pi}{3} - \bigg(2x - \dfrac{2\pi}{3} \bigg)}{2} \bigg)\bigg]

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos 2x + 2cos \bigg(\dfrac{4x}{2} \bigg) . cos \bigg( \dfrac{\dfrac{4\pi}{3} }{2} \bigg) \bigg]

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos 2x + 2cos (2x) . cos \bigg( \dfrac{2\pi}{3} \bigg) \bigg]

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos 2x + 2cos (2x) . cos \bigg( \pi - \dfrac{\pi}{3} \bigg) \bigg]

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos 2x + 2cos (2x) . \bigg( \dfrac{-1}{2} \bigg) \bigg]

\sf \implies \dfrac{1}{2} \bigg[ 3 + cos2x - cos2x \bigg] = \dfrac{3}{2}


MystícPhoeníx: Wow :D
amansharma264: Thanku
mddilshad11ab: Great¶
amansharma264: Thanku
Answered by MagicalLove
215

Step-by-step explanation:

 \huge{ \underline{ \underline{ \textsf{ \textbf{ \purple{Answer :-}}}}}}

 \\ \sf \: \: \: \: \: \: \: \cos ^{2} (x) + { \cos }^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + { \cos }^{2} \bigg(x - \dfrac{\pi}{3} \bigg) = \frac{3}{2} \\

LHS :

 \bf \longmapsto \: \cos ^{2} x + { \cos }^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + { \cos }^{2} \bigg(x - \dfrac{\pi}{3} \bigg)

 \bf \longmapsto \:  \bigg( \frac{1 + cos2x}{2}  \bigg) +  \left[ \:  \frac{1 + cos2 \bigg(x +  \frac{\pi}{3} \bigg)} {2}   \right] +  \left[ \:  \frac{1 + cos2 \bigg(x  -   \frac{\pi}{3} \bigg)} {2}   \right] \\

 \bf \left[ \:   cos \: 2x = 2 {cos}^{2} x - 1 \:  \: (or)  {cos}^{2} x =  \frac{1 + cos2x}{2} \right] \\

 \bf \longmapsto \:  \frac{1}{2} \left [ 1 + cos \: 2x + 1 + cos2 \bigg(x +  \frac{\pi}{3} \bigg) \right] + 1 + cos2 \bigg(x -  \frac{\pi}{3} \bigg) \\

 \bf \longmapsto \:  \frac{1}{2}  \left[3 + cos \: 2x + cos2 \bigg(x -  \frac{\pi}{3} \bigg) + cos2 \bigg(x -  \frac{\pi}{3} \bigg)   \right] \\

 \tt \: using \: cos \: x \:  +  \: cos \: y \:  = 2 \: cos \:  \bigg( \frac{x + y}{2}  \bigg)cos \bigg( \frac{x  - y}{2}  \bigg) \\

 \tt \: replace \:  \: x \:  \: by \:  \: 2x +  \frac{2\pi}{3}  \:  \: and \:  \: y \:  \: by2x -  \frac{2\pi}{3}  \\

 \bf \longmapsto \: \frac{1}{2}  \left [ 3 + cos2x + 2cos \bigg(  \frac{2x +  \frac{2\pi}{3}  + 2x -  \frac{2\pi}{3} }{2}  \bigg)cos \bigg( \frac{2x +  \frac{2\pi}{3} - (2x -  \frac{2\pi}{3})  }{2}  \bigg)\right] \\

 \bf \longmapsto \:  \frac{1}{2}  \left[ 3 + cos \: 2x + cos \bigg( \frac{4x}{2} \bigg)cos \bigg( \frac{4\pi}{ \frac{3}{2} }  \bigg) \right] \\

 \bf \longmapsto \:  \frac{1}{2} \left [ 3 + cos2 + 2cos2x \:  \: cos \bigg( \frac{2\pi}{3} \bigg) \right] \\

 \bf \longmapsto \:  \frac{1}{2} \left [ 3 + cos2 + 2cos2x \:  \: cos \bigg(\pi -  \frac{\pi}{3}  \bigg) \right] \\

 \bf \longmapsto \:  \frac{1}{2} \left [ 3 + cos2 + 2cos2x \:  \: cos \bigg(  - cos \:  \bigg( \frac{\pi}{3}  \bigg) \bigg)\right] \\

 \bf \: Using  \:  \: cos (π- \theta)=-cos \theta

 \bf \longmapsto \:  \frac{1}{2}  \left[ 3 + cos2x + 2cos2x \bigg( \frac{ - 1}{2} \bigg) \right] \\

\bf \longmapsto \:  \frac{1}{2}  \left[ 3 + cos2x - cos2x\right] \\

 \bf \longmapsto \purple{ \frac{3}{2} } \\

LHS = RHS

HENCE PROVED !!


MystícPhoeníx: Nice ! Keep it Up :p
mddilshad11ab: Perfect¶
Similar questions