Math, asked by TheBrainlistUser, 2 months ago


\large\underline\mathfrak\red{Question  \: :- }
Some plastic balls of radius 1 cm were melted and cast into a tube. The thickness, length and outer radius of the tube were 2 cm, 90 cm and 30 cm respectively. How many balls were melted to make the tube ?

Rules :- 1) Correct and detailed answer
2) No spam
3) Only great users or moderator or intelligent users answer wanted ​

Answers

Answered by 12thpáìn
305

Given that

  • Radius of plastic balls= 1cm
  • Thickness of tube=2cm
  • Length of tube(h)=90
  • Outer Radius of tube (R)=30cm

To Find

  • How many balls were melted to make the tube?

Formula used

{\underline{\boxed{ { \bf{ \: Volume~ of~ plastic \: balls= \green{ \cfrac{4}{3} \pi {r}^{3} \: \: }}}}}}

{\underline{\boxed{ { \bf{ \: Volume~ of~ tube(hollow \:  cylinder)= \green{ πh{ ({R}^{2}   - {r}^{2} ) \: \: }}}}}}}

Solution

{\sf Volume~ of~ plastic \: balls= { \cfrac{4}{3}\pi {r}^{3}  \: \: }}

{\sf Volume~ of~ plastic \: balls= { \cfrac{4}{3}\pi  \times {1}^{3}  \: \: }}

{\sf Volume~ of~ plastic \: balls= { \cfrac{4}{3}\pi  \: \: }}\\\\

Now

\\

  • Thickness of tube=2cm
  • Length of tube(h)=90
  • Outer Radius of tube (R)=30cm

\\\text{\sf Inner Radius= Outer Radius - Thickness of tube}

\sf{Inner Radius= 30-2}

\sf{Inner Radius= 28cm}\\\\

{ \sf \: Volume~ of~ tube(hollow \:  cylinder)=  πh{ ({R}^{2}   - {r}^{2} ) \: \: }}

{ \sf \: Volume~ of~ tube(hollow \:  cylinder)=  π \times 90 \times { ({30}^{2}   - {28}^{2} ) \: \: }}

{ \sf \: Volume~ of~ tube(hollow \:  cylinder)=  π \times 90 \times { (900 - 784) \: \: }}

{ \sf \: Volume~ of~ tube(hollow \:  cylinder)=   90 \pi\times116\: \: }

{ \sf \: Volume~ of~ tube(hollow \:  cylinder)=   10440\pi\: \: }\\\\

{\sf Number \:  of \:  balls  \: were \:  melted \:  to \:  make  \: the  \: tube= \dfrac{Volume~ of~ tube(hollow \:  cylinder)}{Volume~ of~ plastic \: balls}}

{\sf Number \:  of \:  balls  \: were \:  melted \:  to \:  make  \: the  \: tube= \dfrac{10440\pi}{ \dfrac{4}{3} \pi}}

{\sf Number \:  of \:  balls  \: were \:  melted \:  to \:  make  \: the  \: tube= \dfrac{10440 \times 3}{ 4}}

{\sf Number \:  of \:  balls  \: were \:  melted \:  to \:  make  \: the  \: tube= \dfrac{31320}{ 4}}

{\sf Number \:  of \:  balls  \: were \:  melted \:  to \:  make  \: the  \: tube= 7830}

 \\  \\  \\  \text{ \bf{Number of balls were melted to make the tube }}\\\sf= \pink{ 7830} \\  \\  \\  \\

Figure of the Tube

\\\\

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){6}}\multiput(1,0)(2,0){2}{\line(0,1){6}}\multiput(0,0)(0,6){2}{\qbezier(0,0)(2,-0.6)(4,0)}\multiput(0,0)(0,6){2}{\qbezier(0,0)(2,0.6)(4,0)}\multiput(1,0)(0,6){2}{\qbezier(0,0)(1,-0.2)(2,0)}\multiput(1,0)(0,6){2}{\qbezier(0,0)(1,0.2)(2,0)}\multiput(2,0.07)(0,0.3){20}{\line(0,1){0.2}}\multiput(2,4)(0.3,0){7}{\line(1,0){0.2}}\multiput(2,2)(-0.27,0){4}{\line(-1,0){0.2}}\put(1.4,1.5){\bf\large r}\put(3.35,3.45){\bf R}\put(1.4,3){\bf H}\end{picture}

\\\\\\\\

More Important Formula

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\\

Similar questions