Math, asked by Anonymous, 1 year ago


  \large  {\underline{\mathfrak{Trigonometry \:  \: class - 10}}} \\  \\ Q: \frac{ \tan \theta }{1 -  \cot\theta }  +  \frac{ \cot\theta }{1 -  \tan\theta}  = 1 +  \sec\theta  \cosec\theta

#Explanation Needed!

Answers

Answered by Anonymous
22

Answer is in the attachment ❤

Attachments:
Answered by Anonymous
26

Given :-

 \mathsf{\dfrac{Tan\theta}{1-Cot \theta }+ \dfrac{Cot\theta}{1-tan \theta }}

To prove :-

\mathsf{ 1 + Sec\theta . Cosec\theta }

Solution:-

In this kind of question,

First change the  Tan\theta and Cot\theta in to Sin and Cos form.

  • Considering L. H. S

\mathsf{\dfrac{\dfrac{Sin\theta}{Cos\theta}}{1-\dfrac{Cos\theta}{Sin\theta}}+\dfrac{\dfrac{Cos\theta}{Sin\theta}}{1-\dfrac{Sin\theta}{Cos\theta}}}

 \mathsf{\dfrac{\dfrac{Sin\theta}{Cos\theta}}{\dfrac{Sin\theta - Cos\theta}{Sin\theta}}+\dfrac{\dfrac{Cos\theta}{Sin\theta}}{\dfrac{Cos\theta-Sin\theta}{Cos\theta}}}

\mathsf{\dfrac{Sin^2\theta}{Cos\theta\left(Sin\theta -Cos\theta\right)}+\dfrac{Cos^2\theta}{Sin\theta\left(Cos\theta -Sin\theta\right)}}

 \mathsf{\dfrac{Sin^2 \theta }{Cos\theta\left(Sin\theta -Cos\theta\right)}-\dfrac{Cos^2\theta}{Sin\theta \left(Sin\theta - Cos\theta\right)}}

 \mathsf{\dfrac{Sin^3\theta -Cos^3 \theta}{Sin\theta Cos\theta\left(Sin\theta -Cos\theta\right)}}

\mathsf{\dfrac{\left(Sin\theta -Cos\theta\right) \left(Sin^2 \theta + Cos^2 \theta - Sin\theta Cos\theta \right)}{Sin\theta Cos\theta \left(Sin\theta - Cos\theta \right)}}

\mathsf{ \dfrac{\left(Sin\theta-Cos\theta\right)\left(1+Sin\theta Cos\theta\right)}{Sin\theta Cos\theta \left(Sin\theta -Cos\theta\right)}}

 \mathsf{\dfrac{1 + Sin\theta Cos\theta}{Sin\theta Cos\theta}}

\mathsf{ \dfrac{1}{Sin\theta Cos\theta} + \dfrac{Sin\theta Cos \theta }{Sin\theta Cos \theta }}

 \mathsf{Cosec\theta Sec\theta + 1}

hence proved...

Similar questions