Math, asked by Anonymous, 2 months ago

\large\underline{\purple{\mathfrak{Differentiation}}} :\\

\textsf{ Use \red{chain\; rule} to find \frac{dy}{dx} ,
\\\bf if \: y = \left(\dfrac{2x-1}{2x+1}\right)^2

\green{\textbf{ Spammers stay away}}

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \bigg( \frac{2x - 1}{2x + 1}  \bigg)^{2}  \\

  \implies\frac{dy}{dx} =  2\bigg( \frac{2x - 1}{2x + 1}  \bigg). \frac{d}{dx}  \bigg( \frac{2x - 1}{2x + 1}  \bigg)\\

  \implies\frac{dy}{dx} =  2\bigg( \frac{2x - 1}{2x + 1}  \bigg). \frac{(2x + 1). \frac{d}{dx}(2x - 1) - (2x - 1). \frac{d}{dx}(2x + 1)  }{ {(2x + 1)}^{2} } \\

  \implies\frac{dy}{dx} =  2\bigg( \frac{2x - 1}{2x + 1}  \bigg). \frac{2(2x + 1) - 2(2x - 1).   }{ {(2x + 1)}^{2} } \\

  \implies\frac{dy}{dx} =  2\bigg( \frac{2x - 1}{2x + 1}  \bigg). \frac{4x + 2 - 4x  + 2  }{ {(2x + 1)}^{2} } \\

  \implies\frac{dy}{dx} =  2\bigg( \frac{2x - 1}{2x + 1}  \bigg). \frac{4}{ {(2x + 1)}^{2} } \\

  \implies\frac{dy}{dx} = 8 \bigg \{ \frac{2x - 1}{(2x + 1) ^{3} } \bigg \}  \\

Answered by scs633678
13

Answer:

Step-by-step explanation:</p><p></p><p>We have,</p><p></p><p>\begin{gathered}y = \bigg( \frac{2x - 1}{2x + 1} \bigg)^{2} \\ \end{gathered}y=(2x+12x−1)2</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 2\bigg( \frac{2x - 1}{2x + 1} \bigg). \frac{d}{dx} \bigg( \frac{2x - 1}{2x + 1} \bigg)\\ \end{gathered}⟹dxdy=2(2x+12x−1).dxd(2x+12x−1)</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 2\bigg( \frac{2x - 1}{2x + 1} \bigg). \frac{(2x + 1). \frac{d}{dx}(2x - 1) - (2x - 1). \frac{d}{dx}(2x + 1) }{ {(2x + 1)}^{2} } \\ \end{gathered}⟹dxdy=2(2x+12x−1).(2x+1)2(2x+1).dxd(2x−1)−(2x−1).dxd(2x+1)</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 2\bigg( \frac{2x - 1}{2x + 1} \bigg). \frac{2(2x + 1) - 2(2x - 1). }{ {(2x + 1)}^{2} } \\ \end{gathered}⟹dxdy=2(2x+12x−1).(2x+1)22(2x+1)−2(2x−1).</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 2\bigg( \frac{2x - 1}{2x + 1} \bigg). \frac{4x + 2 - 4x + 2 }{ {(2x + 1)}^{2} } \\ \end{gathered}⟹dxdy=2(2x+12x−1).(2x+1)24x+2−4x+2</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 2\bigg( \frac{2x - 1}{2x + 1} \bigg). \frac{4}{ {(2x + 1)}^{2} } \\ \end{gathered}⟹dxdy=2(2x+12x−1).(2x+1)24</p><p></p><p>\begin{gathered} \implies\frac{dy}{dx} = 8 \bigg \{ \frac{2x - 1}{(2x + 1) ^{3} } \bigg \} \\ \end{gathered}⟹dxdy=8{(2x+1)32x−1}</p><p></p><p>

Similar questions