Math, asked by AnanyaBaalveer, 1 day ago


\large\underline \red{{\bf{Question}}}

\large{\sf{ \int  \frac{ \{x(\pi + 49) \} ^{ \frac{15}{7} } }{ {\pi}^{2}( {x}^{\pi} + 7) }dx }}
\large\gray{\bf{No  \: spam}}
Answer only if you know
Good explanation

Answers

Answered by SURAJSAH62
40

Answer:

answer is

654

that question is very difficult but important as it is

Answered by Calculator50
338

\large{\underline{\underline \red{{\bf{Question : }}}}} \\

 \begin{gathered}\large{\sf{ \int \frac{ \{x(\pi + 49) \} ^{ \frac{15}{7} } }{ {\pi}^{2}( {x}^{\pi} + 7) } \: dx }} \end{gathered} \\  \\

  \rm \large \underline{Solution :  - } \\

 \rm \bf{  we \: know \: that \: { \:  \large\pi =  \frac{22}{7} }} \\

The π value in fraction is 22/7. It is known that pi is an irrational number which means that the digits after the decimal point are never-ending and being a non-terminating value. Therefore, 22/7 is used for everyday calculations. ‘π’ is not equal to the ratio of any two number, which makes it an irrational number.

 \begin{gathered}\sf \: {So \:  let , \:  t \:  =  \:  {x \: }^{\pi} \:  +  \: 7  } \end{gathered} \\

and differentiate with respect to get x

Now we get,

 \begin{gathered} \displaystyle \bf{t \: =  {x}^{ \pi}  \:  +  \: 7\:  }\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  \dfrac{dt}{dx} \:  =  \displaystyle  \pi \: x \:  ^{\pi \:  -  \: 1}  \:  }\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  dt\:  =  \displaystyle  \pi \: x \:  ^{\pi \:  -  \: 1}  \: dx }\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  dt\:  =  \displaystyle  \pi \: x \:  ^{ \frac{22}{7}  \:  -  \: 1}  \:  dx}\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  dt\:  =  \displaystyle  \pi \: x ^{\frac{22 - 7}{7} }\:  dx \:  }\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  dt \:  =  \displaystyle \pi \: x \:   ^{\frac {15}{7} } \:  dx}\end{gathered} \\  \\

 \begin{gathered} \sf :  \implies{ \:  dx\:  =   \frac{dt}{  \displaystyle{\pi \: x}^{ \frac{15}{7} } }  }\end{gathered} \\  \\

 \overline{ \rule{300pt}{2pt}} \\

Given function —

\begin{gathered} \qquad \bigstar \:  \:  \boxed{\large{\sf{ \int \frac{ \{x(\pi + 49) \} ^{ \frac{15}{7} } }{ {\pi}^{2}( {x}^{\pi} + 7) } \: dx }}}  \:  \: \bigstar \end{gathered} \\  \\

\begin{gathered} \qquad \dashrightarrow\large{\sf{ \int \dfrac{ x^{ \frac{15}{7} } (\pi + 49)  ^{ \frac{15}{7} } }{ {\pi}^{2}( {x}^{\pi} + 7) } \:  \dfrac{dt}{\pi \: \displaystyle x  ^{15 /7 }}  }} \end{gathered} \\  \\

\begin{gathered} \qquad \dashrightarrow\large{\sf{  \dfrac{ { \ } (\pi + 49)  ^{ \frac{15}{7} } }{ {\pi}^{3}}\int\dfrac{1}{t}  \: dt }} \end{gathered} \\  \\

\begin{gathered} \qquad \dashrightarrow\large{\sf{  \dfrac{{ \ }(\pi + 49) ^{ \frac{15}{7}} } {{\pi}^{3}}\: log \: t \:  +  \: C}}\end{gathered} \\  \\

\begin{gathered} \qquad \dashrightarrow\large{\sf{ \dfrac{{ \ } (\pi + 49)  ^{ \frac{15}{7}} \displaystyle \: log( {x}^{ \pi} \:  + \:  7 )}{ {\pi}^{3}}\:  +  \: C}} \end{gathered} \\  \\

 \overline{ \rule{300pt}{2pt}} \\  \\

Additional information : -

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ {a}^{2} - {x}^{2} } = \dfrac{1}{2a} log\bigg | \dfrac{a + x}{a - x}\bigg | + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {x}^{2} - {a}^{2} } } = log |x + \sqrt{ {x}^{2} - {a}^{2} } | + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {a}^{2} - {x}^{2} } } = {sin}^{ - 1} \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {x}^{2} + {a}^{2} } } = log |x + \sqrt{ {x}^{2} + {a}^{2}} | + c}\\ \\ \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \\

Similar questions