Math, asked by AnanyaBaalveer, 3 days ago

\large\underline{\sf{question-}}
What is the value of
☞If Sin A = 3/4, Calculate cos A and tan A.

Attachments:

Answers

Answered by itzmedipayan2
9

Answer:

 \sin \: a =  \frac{3}{4}  \\

 \frac{side \: opposite \: to \:  \angle \: a}{hypotenuse}  =  \frac{3}{4}  \\

 \frac{bc}{ac} =  \frac{3}{4}   \\

Let BC=3x

AC=4x

Let's find AB by pythagoras theorem.

 {(hypotenuse)}^{2}  =  {(height)}^{2} +  {(base)}^{2}   \\

 {ac}^{2} =  {ab}^{2} +  {bc}^{2}   \\  \\  {(4x)}^{2} =  {ab}^{2} +  {(3x)}^{2} \\  \\  {16x}^{2}   =  {ab}^{2}  +  {9x}^{2}  \\  \\  {16x}^{2} -  {9x}^{2} =  {ab}^{2}    \\  \\  {7x}^{2} =  {ab}^{2} \\  \\  {ab}^{2} =  {7x}^{2} \\  \\ ab =  \sqrt{ {7x}^{2} }  \\  \\ ab =  \sqrt{7} x

Now we need to find Cos A and tan A

So first let's find out cos A

 \cos \: a =  \frac{side \: adjacent \: to \angle \: a}{hypotenuse} \\  \\  =  \frac{ab}{ac}   \\  \\  =  \frac{ \sqrt{7} x}{4x}  \\  \\  =  \frac{ \sqrt{7} }{4}

Now tan A

 \tan \: a =  \frac{side \: opposite \: to \:  \angle \: a}{side \: adjacent \: to \:  \angle \: a}  \\

 \tan \: a =  \frac{bc}{ab} \\  \\ tan \: a  =  \frac{3x}{ \sqrt{7}x }  \\  \\ tan \: a =  \frac{3}{ \sqrt{7} }

Hope it helps you from my side

Answered by Ʀíɗɗℓεʀ
406

Given :

  • {\sf{Sin~A~=~\dfrac{3}{4}}}

To Find :

  • {\sf{Find~ \cos~A~and~ \tan~A~\bf{?}}}

______________

Solution : Sin A & tan A.

~

  • \boxed{\sf{\pink{\pmb{Sin~A~=~\dfrac{3}{4}~=~\dfrac{Perpendicular}{Hypotenuse}}}}}

~

Therefore,

  • Perpendicular = 3
  • Hypotenuse = 4

~

{\bf{\underline{\pmb{Applying~ Pythagoras~ Property~:}}}}

~

  • \boxed{\sf{\purple{\pmb{H^2~=~B^2~+~P^2}}}}

~

{\sf:\implies{H^2~=~B^2~-~P^2}}

{\sf:\implies{B^2~=~4^2~-~3^2}}

{\sf:\implies{B^2~=~16~-~9}}

{\sf:\implies{B^2~=~7}}

  • {\underline{\boxed{\pmb{\sf{\pink{B~=~\sqrt{7}}}}}}} \; {\red{\bigstar}}

~

______________

Hence,

  • {\rm\rightarrow{Hypotenuse~=~4}}
  • {\rm\rightarrow{Base~=~\sqrt{7}}}
  • {\rm\rightarrow{Perpendicular~=~3}}

~

______________

  • {\sf{\cos~A~=~\dfrac{Base}{Hypotenuse}~=~\bf{\pmb{\dfrac{\sqrt{7}}{4}}}}}

  • {\sf{\tan~A~=~\dfrac{Perpendicular}{Base}~=~\bf{\pmb{\dfrac{3}{\sqrt{7}}}}}}
Attachments:
Similar questions