Math, asked by AnanyaBaalveer, 1 day ago


\large\underline{\tt \widetilde{Question}}

If the roots of x² + kx +k+3 = 0 are real and equal, what is the value of k?
(A) - 6 or 2
(B) 6 or-2
(C) 4 or -2
(D) – 4 or 2 - ​

Answers

Answered by StarFighter
15

Answer:

Given :-

  • The roots of x² + kx + k + 3 = 0 are real and equal.

To Find :-

  • What is the value of k.

Solution :-

Given Equation :

\mapsto \bf x^2 + kx + k + 3 =\: 0\\

By comparing with ax² + bx + c = 0 we get,

where,

❒ a = 1

❒ b = k

❒ c = k + 3

\bigstar The roots are real and equal.

So,

\bigstar \: \: \sf\boxed{\bold{Discriminant =\: b^2 - 4ac =\: 0}}\: \: \: \bigstar\\

According to the question by using the formula we get,

\implies \bf b^2 - 4ac =\: 0

\implies \sf (k)^2 - 4(1)(k + 3) =\: 0

\implies \sf k^2 - 4(k + 3) =\: 0

\implies \sf k^2 - 4k - 12 =\: 0\: \: \bigg\lgroup \bf By\: Doing\: Middle-term\: break \bigg\rgroup\\

\implies \sf k^2 - (6 - 2)k - 12 =\: 0

\implies \sf k^2 - 6k + 2k - 12 =\: 0

\implies \sf k(k - 6) + 2(k - 6) =\: 0

\implies \sf (k - 6)(k + 2) =\: 0

\implies \sf k - 6 =\: 0

\implies \bf k =\: 6\\

Or,

\implies \sf k + 2 =\: 0

\implies \bf k =\: - 2\\

Hence, we get the two values of k i.e, 6 , - 2.

\sf\bold{\underline{\therefore\: The\: value\: of\: k\: is\: 6\: or\: - 2\: .}}\\

Hence, the correct options is option no (B) 6 or - 2 .

Answered by Talpadadilip783
3

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

The given quadratic equation is : x² + kx +k+3 = 0

Here,

a=1 , b=k , c=k+3

Now,

 \rm D=b^{2}-4×a×c

 \rm =  {k}^{2}  - 4 \times 1 \times ( k+ 3)

We know that a quadratic equation has real and equal roots If D=0

 \rm  \implies {k}^{2}  - 4k + 12 = 0

 \rm\implies (k−6)(k+2)=0

 \rm\implies When k-6=0 or k+2=0

  \boxed{\color{purple} \rm\implies k=6,-2}

Similar questions