Math, asked by Anonymous, 3 months ago

\Large{\underline{\underline{\bf{Question:-}}}}

\frac{ \cos A    -  \sin A  + 1 }{\cos A  +  \sin A - 1 } = cosec A + cot A, Using the identity cosec² A = 1 + cot² A.​

Answers

Answered by AestheticSky
21

\implies\sf  \dfrac{ \cos(a)  -  \sin(a)  + 1}{ \cos(a) +  \sin(a) - 1  }  \\  \\  \implies\dfrac{ \dfrac{ \cos(a)  -  \sin(a) + 1  }{ \sin(a) } }{ \dfrac{ \cos(a)  +  \sin(a)   - 1}{ \sin(a) } }  \\  \\  \implies\dfrac{ \dfrac{ \cos(a) }{ \sin(a) }  -   \dfrac{ \sin(a) }{ \sin(a) }  +  \dfrac{1}{ \sin(a) }  }{ \ \dfrac{ \cos(a) }{ \sin(a) }  +  \dfrac{ \sin(a) }{ \sin(a) }  -  \dfrac{1}{  \sin(a)  }  } \\  \\  \implies \frac{ \cot(a)  - 1 +  \csc(a) }{ \cot(a)  + 1 -  \csc(a)  } \\  \\  \implies\frac{ \cot(a) +  \csc(a) - ( { \csc(a) }^{2}  -  { \cot(a) }^{2})   }{ \cot(a)  + 1 -  \csc(a) }  \\  \\  \implies\frac{ \cot(a)  +  \csc(a)  - ( \csc(a) +  \cot(a))( \csc(a) -  \cot(a) }{ \cot(a)  + 1 -  \csc(a) }  \\  \\  \implies\frac{ \cot(a)  +  \csc(a)(1 -  \csc(a) +   \cot(a)  }{1 -  \csc(a) +  \cot(a)  }  \\  \\ \implies \csc(a)  +  \cot(a)

Additional information:-

  • Sin²A + Cos²A = 1
  • Cosec²A-Cot²A = 1
  • Sec²A-Tan²A = 1

Note:- I've used (a) instead of (A)

___________________________

hope it's beneficial ⭐

Answered by Anonymous
8

⟹ cos(a)+sin(a)−1

cos(a)−sin(a)+1

⟹ sin(a)cos(a)+sin(a)−1

sin(a)cos(a)−sin(a)+1

⟹ sin(a)cos(a) + sin(a)sin(a) − sin(a)1

sin(a)cos(a)− sin(a)sin(a)+ sin(a)1

⟹ cot(a)+1−csc(a)

cot(a)−1+csc(a)

⟹ cot(a)+1−csc(a)

cot(a)+csc(a)−(csc(a) 2−cot(a) 2 )

⟹ cot(a)+1−csc(a)

cot(a)+csc(a)−(csc(a)+cot(a))(csc(a)−cot(a)

⟹ 1−csc(a)+cot(a)

cot(a)+csc(a)(1−csc(a)+cot(a)

⟹csc(a)+cot(a)

Additional information:-

Sin²A + Cos²A = 1

Cosec²A-Cot²A = 1

Sec²A-Tan²A = 1

Note:- I've used (a) instead of (A)

___________________________

hope it's helps⭐

Similar questions