Science, asked by Mysterioushine, 6 months ago


{\LARGE{\underline{\underline{\bf{Question :-\  \textless \ br /\  \textgreater \ }}}}} \\ \\
Study the given graph (in attachement) and Identify the correct relation between \sf{T_1} , \sf{T_2} and \sf{T_3}

1] \sf{T_1 >T_2> T_3}

2] \sf{T_1< T_2 < T_3}

3] \sf{T_1 = T_2 = T_3}

4] \sf{T_3> T_2 < T_1}

Please answer with proper explanation. Spam answers will be deleted.​

Attachments:

Answers

Answered by shadowsabers03
44

Given three isotherms of constant temperatures \displaystyle\sf {T_1,\ T_2} and \displaystyle\sf {T_3} each, among which we need to find the correct relation.

Since isotherms are given, Boyle's Law is applied.

\displaystyle\sf{\longrightarrow PV =K\quad\quad\dots(1)}

By ideal gas equation,

\displaystyle\sf{\longrightarrow PV=nRT\quad\quad\dots(2)}

From (1) and (2) we get,

\displaystyle\sf{\longrightarrow K=nRT}

Then the work done during the process,

\displaystyle\sf{\longrightarrow W=\int\limits_{V_1}^{V_2}P\ dV}

\displaystyle\sf{\longrightarrow W=\int\limits_{V_1}^{V_2}KV^{-1}\ dV}

\displaystyle\sf{\longrightarrow W=K\left [\log V\right]_{V_1}^{V_2}}

\displaystyle\sf{\longrightarrow W=nRT\log\left (\dfrac {V_2}{V_1}\right)}

From this we get,

\displaystyle\sf{\longrightarrow W\propto T\quad\quad\dots (3)}

We know the work done during the process is given by area under the graph.

If \displaystyle\sf {W_1,\ W_2} and \displaystyle\sf {W_3} are the works done in each isotherm of temperatures \displaystyle\sf {T_1,\ T_2} and \displaystyle\sf {T_3} respectively, we see that,

\displaystyle\sf{\longrightarrow W_1<W_2<W_3}

By (3),

\displaystyle\sf {\longrightarrow\underline {\underline {T_1<T_2<T_3}}}

Hence (2) is the answer.

Answered by llsilentkiller420ll
1

Answer:

Given three isotherms of constant temperatures \displaystyle\sf {T_1,\ T_2}T

1

, T

2

and \displaystyle\sf {T_3}T

3

each, among which we need to find the correct relation.

Since isotherms are given, Boyle's Law is applied.

\displaystyle\sf{\longrightarrow PV =K\quad\quad\dots(1)}⟶PV=K…(1)

By ideal gas equation,

\displaystyle\sf{\longrightarrow PV=nRT\quad\quad\dots(2)}⟶PV=nRT…(2)

From (1) and (2) we get,

\displaystyle\sf{\longrightarrow K=nRT}⟶K=nRT

Then the work done during the process,

\displaystyle\sf{\longrightarrow W=\int\limits_{V_1}^{V_2}P\ dV}⟶W=

V

1

V

2

P dV

\displaystyle\sf{\longrightarrow W=\int\limits_{V_1}^{V_2}KV^{-1}\ dV}⟶W=

V

1

V

2

KV

−1

dV

\displaystyle\sf{\longrightarrow W=K\left [\log V\right]_{V_1}^{V_2}}⟶W=K[logV]

V

1

V

2

\displaystyle\sf{\longrightarrow W=nRT\log\left (\dfrac {V_2}{V_1}\right)}⟶W=nRTlog(

V

1

V

2

)

From this we get,

\displaystyle\sf{\longrightarrow W\propto T\quad\quad\dots (3)}⟶W∝T…(3)

We know the work done during the process is given by area under the graph.

If \displaystyle\sf {W_1,\ W_2}W

1

, W

2

and \displaystyle\sf {W_3}W

3

are the works done in each isotherm of temperatures \displaystyle\sf {T_1,\ T_2}T

1

, T

2

and \displaystyle\sf {T_3}T

3

respectively, we see that,

\displaystyle\sf{\longrightarrow W_1 < W_2 < W_3}⟶W

1

<W

2

<W

3

By (3),

\displaystyle\sf {\longrightarrow\underline {\underline {T_1 < T_2 < T_3}}}⟶

T

1

<T

2

<T

3

Hence (2) is the answer.

Similar questions