Math, asked by Anonymous, 7 days ago

\large\underline{\underline{\bold{\red{\: Question :-}}}}

\large\purple\rightarrowMention the possible values of x, which satisfy the trigonometric equation \rm{\tan ^{ - 1}  ( \frac{x - 1}{x - 2}) +  \tan  ^{ - 1}( \frac{x + 1}{x + 2}) =  \frac{\pi}{2}}.​

Answers

Answered by mathdude500
53

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\rm{\tan ^{ - 1}  \bigg( \dfrac{x - 1}{x - 2}\bigg) + \tan ^{ - 1}\bigg( \dfrac{x + 1}{x + 2}\bigg) = \dfrac{\pi}{2}}

We know that

\boxed{ \bf{ \:  {tan}^{ - 1}x + {tan}^{ - 1}y = {tan}^{ - 1}\bigg[ \frac{x + y}{1 - xy}\bigg] \: when \: xy \leqslant 1}}

So, using this identity, we have

\rm :\longmapsto\:{tan}^{ - 1}\bigg[ \dfrac{\dfrac{x - 1}{x - 2}  + \dfrac{x + 1}{x + 2} }{1 - \dfrac{x - 1}{x - 2}  \times \dfrac{x + 1}{x + 2} } \bigg] = \dfrac{\pi}{2}

\rm :\longmapsto\:{tan}^{ - 1}\bigg[\dfrac{(x - 1)(x + 2) + (x + 1)(x - 2)}{(x + 2)(x - 2) - (x + 1)(x - 1)}\bigg] = \dfrac{\pi}{2}

\rm :\longmapsto\:{tan}^{ - 1}\bigg[\dfrac{ {x}^{2}  + 2x - x - 2 +  {x}^{2} - 2x + x - 2 }{ {x}^{2}  - 4 - ( {x}^{2}  - 1)}\bigg] = \dfrac{\pi}{2}

\rm :\longmapsto\:{tan}^{ - 1}\bigg[\dfrac{ 2{x}^{2} - 4 }{ {x}^{2}  - 4 - {x}^{2}  + 1}\bigg] = \dfrac{\pi}{2}

\rm :\longmapsto\:{tan}^{ - 1}\bigg[\dfrac{ 2{x}^{2} - 4 }{ - 3}\bigg] = \dfrac{\pi}{2}

\rm :\longmapsto\:\bigg[\dfrac{ 2{x}^{2} - 4 }{ - 3}\bigg] = tan\dfrac{\pi}{2}

\rm :\longmapsto\:\bigg[\dfrac{ 2{x}^{2} - 4 }{ - 3}\bigg] = not \: defined

\bf\implies \: - 3 = 0

\rm :\longmapsto\:which \: is \: not \: possible

\bf\implies \:There \: is \: no \: real \: value \: of \: x

Additional Information :-

\rm :\longmapsto\:{tan}^{ - 1}x - {tan}^{ - 1}y = {tan}^{ - 1}\bigg[\dfrac{x - y}{1 + xy}\bigg]

\rm :\longmapsto\:2{tan}^{ - 1}x =  {sin}^{ - 1}\bigg(\dfrac{2x}{1  +  {x}^{2} } \bigg)

\rm :\longmapsto\:2{tan}^{ - 1}x =  {tan}^{ - 1}\bigg(\dfrac{2x}{1  -   {x}^{2} } \bigg)

\rm :\longmapsto\:2{tan}^{ - 1}x =  {cos}^{ - 1}\bigg(\dfrac{1 -  {x}^{2} }{1 + {x}^{2} } \bigg)

\rm :\longmapsto\:2{sin}^{ - 1}x =  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }) =  {cos}^{ - 1}(1 - 2 {x}^{2})

\rm :\longmapsto\:2{cos}^{ - 1}x =  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }) =  {cos}^{ - 1}(2 {x}^{2} - 1)

Answered by Vikramjeeth
17

*Question:

Mention the possible values of x, which satisfy the trigonometric equation:—

→ tan^-1 (x-1/x-2) + tan^-1 (x+1)/(x+2) = π/2

*Answer:

 { \tan}^{ - 1} (  \frac{x - 1}{x - 2} ) +   { \tan}^{ - 1} ( \frac{x + 1}{x + 2} ) =  \frac{\pi}{2}  \\

 =  >  { \tan}^{ - 1} [  \frac{ \frac{x - 1}{x  - 2}  +  \frac{x + 1}{x + 2} }{1 -  \frac{(x - 1)}{(x - 2)}  \frac{(x + 1)}{(x + 2)} } ] =  \frac{\pi}{2}  \\

 =  >  \frac{(x - 1)(x + 2) + (x + 1)(x - 2)}{ {x}^{2}  - 4 - ( {x}^{2}  - 1)}  = 1 \\

 =  >  \frac{ {x}^{2}  + x - 2 +  {x}^{2} - x - 2 }{ - 3}  = 1 \\

 =  > 2 {x}^{2}  - 2 =  - 3

 =  >  {2x}^{2}  =  - 3 + 2

 =  >  {2x}^{2}  =  - 1

 =  > x =  \frac{ - 1}{ \sqrt{2}  }

Similar questions