Physics, asked by Anonymous, 22 days ago

 \large{\underline{\underline{\maltese{\pink{\pmb{\sf{ \; Question \; :- }}}}}}}

What is the work to be done to increase the velocity of a car from 30 km/h-¹ to 60 km/h-¹ if the mass of the car is 1500 kg .

 \\ {\orange{\underline{\rule{75pt}{9pt}}}}{\color{cyan}{\underline{\rule{75pt}{9pt}}}}{\red{\underline{\rule{75pt}{9pt}}}}

 \large{\underline{\underline{\maltese{\color{darkblue}{\pmb{\sf{ \; Note \; :- }}}}}}}

 \longrightarrow \; {\red{\sf{ No \; Spams }}}

 \longrightarrow Proper and with full Explanation .

 \longrightarrow Latex must be used .

 \\ {\color{cyan}{\underline{\rule{75pt}{9pt}}}}{\pink{\underline{\rule{75pt}{9pt}}}}{\color{maroon}{\underline{\rule{75pt}{9pt}}}}

Answers

Answered by YxMissAnglexY
144

\mathfrak\red{Question:--}

What is the work to be done to increase the velocity of a car from 30 km/h-¹ to 60 km/h-¹ if the mass of the car is 1500 kg .

⠀⠀⠀⠀

\mathfrak\red{Answer:--}

{\underline{\boxed{\bf\green{Given,}}}}

Mass of the car, m = 1500 kg

Initial velocity of the car, u = 30 km/h =

\bf{ \frac{30 \times 1000 \: m}{3000 \: s}  =  \frac{25}{3}m {s}^{ - 1}  }

[converted km/h to m/s]

Final velocity of the car, v = 60 km/h =

\bf{ \frac{60 \times 1000 \: m}{3600 \: s}  =  \frac{50}{3}m {s}^{ - 1}  }

[converted km/h to m/s]

⠀⠀⠀⠀

\\ {\orange{\underline{\rule{75pt}{9pt}}}}{\color{cyan}{\underline{\rule{75pt}{9pt}}}}{\red{\underline{\rule{75pt}{9pt}}}}

⠀⠀⠀⠀

{\underline{\boxed{\bf\green{To  \: find,}}}} -  - \bf\red{work \: done \: (w)}

{\underline{\boxed{\bf\green{Solution :}}}}

According to the Work-Energy theorem or the relation between Kinetic energy and Work done - The work done on an object is the change in its kinetic energy.

So, Work done on the car = Change in the kinetic energy (K.E) of the car

=

\bf\pink{Final  \: K.E \:  -Initial\: K.E }

\bf{work \: done \:  \: w =  \frac{1}{2} m {v}^{2} =  \frac{1}{2}  m {u}^{2} }

\bf{.:K.E \:  =  \frac{1}{m {v}^{2} }  }

where,

mass of the body = m

and the velocity with which the body is travelling = v

➼ \: \bf\purple{W \:  =  \frac{1}{2}m( {v}^{2}  -  {u}^{2})  }

(taking out common)

Now, Substituting the values,

\bf{W =  \frac{1}{2}  \times 1500[(  { \frac{50}{3}) }^{2} -  { (\frac{25}{3}) }^{2}   ]}

\bf{W =  \frac{1}{2}  \times 1500[(   \frac{50}{3}  +  \frac{25}{3} )( \frac{50}{3}  -  \frac{25}{3}) ]}

➼ \:  \: \bf\purple{ {a}^{2} -  {b}^{2}  = (a + b)(a - b) }

\bf{W =  \frac{1}{2}  \times 1500 \times  \frac{75}{3} \times  \frac{25}{3}  }

\bf\red{W =156250 \:  \:  joule}

➼ Hence, the work to be done to increase the velocity of a car 30 km/h-¹ to 60 km/h-¹ from is 156250 joule, if the mass of the car is 1500 kg.

\\ {\color{cyan}{\underline{\rule{75pt}{9pt}}}}{\pink{\underline{\rule{75pt}{9pt}}}}{\color{maroon}{\underline{\rule{75pt}{9pt}}}}

Answered by IIMrVelvetII
27

✏ Coversion from km/h to m/s

1 km = 1000m

1 hour = 60 minutes = 3600 s

\mathtt{\dfrac{1 \: Km}{h} = \dfrac{1000m}{3600s}}

\mathtt{1 km/h = \dfrac{5}{18}m/s}

✠ Solution -

Mass of the car (m) = 1500 kg

Initial Velocity (u) = 30 km/h

\mathtt{ = 30 \times \dfrac{5}{18} \: m/s}

\mathtt{ = \dfrac{5 \times 5}{3} \: m/s}

\mathtt{ = \dfrac{25}{3} \: m/s}

Finally Velocity (v) = 60 km/h

\mathtt{ = 60 \times \dfrac{5}{18} \: m/s}

\mathtt{ = \dfrac{10 \times 5}{3} \: m/s}

\mathtt{ = \dfrac{50}{3} \: m/s}

✠We know that,

\boxed{\small \mathtt{Work \: done = Change \: in \: kinetic \: energy}}

So, finding initial and final kinetic energy,

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Initial Kinetic Energy

\mathtt{ = \dfrac{1}{2}m{u}^{2}}

\mathtt{ = \dfrac{1}{2} \times (1500) \times \dfrac{25}{3}} \times \dfrac{25}{3}

\mathtt{ = \dfrac{750 \times 625}{9}}

\mathtt{ = \dfrac{250 \times 625}{3}}

\mathtt{ = \dfrac{156250}{3}J}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Final Kinetic Energy

\mathtt{ = \dfrac{1}{2}m{v}^{2}}

\mathtt{ = \dfrac{1}{2} \times (1500) \times \dfrac{50}{3}} \times \dfrac{50}{3}

\mathtt{ = \dfrac{750 \times 2500}{9}}

\mathtt{ = \dfrac{250 \times 2500}{3}}

\mathtt{ = \dfrac{625000}{3}J}

➸ We know that,

\boxed{\small \mathtt{Work \: done = Change \: in \: kinetic \: energy}}

= Final Kinetic Energy - Initial Kinetic Energy

\mathtt{ = \dfrac{625000}{3}J - \dfrac{156250}{3}J}

\mathtt{ = \dfrac{468750}{3}J}

 = \boxed{\mathtt{\dfrac{156250}{3}J}}

⇝ Work done is 156250 Joules.

Similar questions