Math, asked by Anonymous, 1 day ago

 \large \; {\underline{\underline{\maltese \; {\purple{\pmb{\sf{ Simple \; Question \; :- }}}}}}}

 \dashrightarrow Find the Area of a triangle if its two sides are 18 cm and 10 cm and its Perimeter is 42 cm .




 \\ {\underline{\rule{200pt}{2pt}}}

 \leadsto  \red{\sf{No \; Spams }}
 \leadsto  \green{\sf{Proper \; Explanation \; will \; be \; Appreciated . }}



 \\ {\underline{\rule{200pt}{2pt}}}

Answers

Answered by AnanyaBaalveer
53

Answer:

\large\underline{\sf{21 \sqrt{11} cm^{2} \:  is \: the \: required \: answer }}

Step-by-step explanation:

According to question:-

Given:-

  • 2 sides of triangle
  • Perimeter of triangle.

Also given that:-

  • 1st side = 18cm.
  • 2nd side =10 cm.
  • Perimeter= 42

To find:-

  • Area of the triangle.

Solution for the third side:-

We know that sum of sides should be equal to the perimeter.

\large{\sf{a + b + c = p}}

Where,

  • a = First side of triangle
  • b= Second side of triangle
  • c = Third side of triangle
  • p = perimeter of triangle

\large\underline{\sf{18cm + 10cm + c = 42cm}}

\large\underline{\sf{28cm + c = 42cm}}

\large\underline{\sf{c = 42cm - 28cm}}

\large\underline{\sf{c = 14cm}}

______________________________________

Calculating for area of triangle.

\large\underline{\sf{ \sqrt{s(s - a)(s - b)(s - c)} }}

Where,

  • s=a+b+c/2
  • a=First side of triangle
  • b=Second side of triangle
  • c= Third side of triangle

Calculating for s:-

\large \green{\underline{ \red{ \boxed{\sf{ \frac{a + b + c}{2} = s }}}}}

\large{\sf{  \implies\frac{18cm + 10cm + 14cm}{2} }}

\large{\sf{ \implies  \frac{42cm}{2} }}

\large\underline{\sf{ \implies 21cm}}

Calculating for area :-

\large\underline{\sf{ \implies \sqrt{21(21 - 18)(21 - 10)(21 - 14)} }}

\large\underline{\sf{  \implies\sqrt{21(3)(11)(7)} }}

\large{\sf{  \implies\sqrt{3 \times 7 \times 3 \times 11 \times 7} }}

\large\underline{\sf{ \implies3cm \times 7cm \sqrt{11} }}

\large\underline{\sf{ \implies21 \sqrt{11}  {cm}^{2} }}

Hence, The area of the figure is 2111.

______________________________________

Answered by BrainlySparrow
104

Given :

  • Perimeter = 42 cm
  • One Side = 18 cm
  • Second Side = 10 cm

To Find :

  • Area of the triangle.

Solution :

So, here we are given, perimeter is 42 cm. Also, we are given with the 2 sides. So, firstly we will have to find the 3rd side.

We know that,

\sf\longrightarrow\;Perimeter_{(Triangle)} = Sum\; of\; all\; sides

Let the missing side be x.

Putting the values,

\sf\longrightarrow\;Perimeter_{(Triangle)} = Sum\; of\; all\; sides

\sf\longrightarrow\;42 = 18 \ + 10 + x

\sf\longrightarrow\;42 =28+ x

\bf\longrightarrow\;14 \: cm= x

So, the other side is 14 cm.

Now, finding the area of the triangle.

★ Firstly, finding the semi perimeter :

 \longrightarrow \sf \dfrac{a + b + c}{2}

Substituting the values,

 \longrightarrow \sf \dfrac{18+ 10+ 14}{2}

 \longrightarrow \sf \dfrac{42}{2}

 \longrightarrow \sf \cancel \dfrac{42}{2}

 \longrightarrow \:  \underline{ \bf 21 \: cm}

Using Heron's Formula :

\sf\longrightarrow\; Area = \sqrt{s(s - a) (s - b) (s - c) }

[Here, s stands for semi - perimeter and a, b and c are the 3 sides.]

Substituting the values,

\sf\longrightarrow\; Area = \sqrt{21(21 - 18) (21 - 10) (21 - 14) }

\sf\longrightarrow\; Area = \sqrt{21(3) (11) (7) }

\sf\longrightarrow\; Area =\sqrt{21 \times 3 \times 11 \times 7 }

\sf\longrightarrow\; Area =\sqrt{4851  }

\sf\longrightarrow\; Area = 69.6491

\sf\longrightarrow\; Area  \approx \: 69.65 \:  {cm}^{2}

 \color{hotpink}{\sf\longrightarrow\;    \underline{\underline{\boxed{ \bf Area = 69.65 \:  {cm}^{2} }} }\:  \bigstar}

Hence, the area of the triangle is 69.65 cm².

Similar questions