Math, asked by ltzFadedRish, 2 months ago

\large{\underline{\underline{\red{\bf{Question}}}}}

☯ Using elementary transformation, find the inverse of the given matrix.

⠀⠀⠀➝ \bigg[ \begin{matrix}2&5 \\ 1&3 \end{matrix} \bigg]

❏ No spamming

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:\bigg[ \begin{matrix}2&5 \\ 1&3 \end{matrix} \bigg]

Let assume that

\rm :\longmapsto\:A \:  =  \: \bigg[ \begin{matrix}2&5 \\ 1&3 \end{matrix} \bigg]

Using Elementary Row Transformation Method, we have

\rm :\longmapsto\:A = IA

\rm :\longmapsto\:\bigg[ \begin{matrix}2&5 \\ 1&3 \end{matrix} \bigg] = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]A

\bf :\longmapsto\:OP \: R_1 \: \to \: R_1 - R_2

\rm :\longmapsto\:\bigg[ \begin{matrix}1&2 \\ 1&3 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\ 0&1 \end{matrix} \bigg]A

\bf :\longmapsto\:OP \: R_2 \: \to \: R_2 - R_1

\rm :\longmapsto\:\bigg[ \begin{matrix}1&2 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\  - 1&2 \end{matrix} \bigg]A

\bf :\longmapsto\:OP \: R_1 \: \to \: R_1 - 2R_2

\rm :\longmapsto\:\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}3& - 5 \\  - 1&2 \end{matrix} \bigg]A

Now, we know,

\bf :\longmapsto\: {AA}^{ - 1}  =  {A}^{ - 1}A= I

Hence,

\bf :\longmapsto\: {A}^{ - 1}  \:  =  \: \bigg[ \begin{matrix}3& - 5 \\  - 1&2 \end{matrix} \bigg]

Additional Information :-

 \boxed{ \rm{ \: | {A}^{ - 1} |  =  \dfrac{1}{ |A| } }}

\boxed{ \rm{ \:A \: (adjA) = (adjA)  A =  |A|I}}

\boxed{ \rm{ |\:adj \: A | \:  =  \:  { |A| }^{n - 1}  }}

\boxed{ \rm{  |I| \: =  \: 1 }}

\boxed{ \rm{  |AB| \: =  \:  |A| \:  |B| }}

\boxed{ \rm{  |kA| \: =  \:  {k}^{n} |A|  }}

Similar questions