Math, asked by IIJustAWeebII, 8 hours ago

 \large{ \underline{ \underline{ \red{ \sf{Question:-}}}}}\\
If A, B, C are finite set, prove that:-

 \tt{n(A \cup B \cup C)= n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) } \\ \\
Note:- Don't spam or give irrelevant answers -_-​

Answers

Answered by ITZSARCATICVAMPIRE
8

\red{\large \mathfrak {qestion}}

 \:

\tt{n(A \cup B \cup C)= n(A)  + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A)  +   n(A \cap B \cap C) }

 \:

\green{\large \mathfrak {solution}}

 \:

We know that,

 \:

\tt \: n(A \cup B \cup C) = n(A \cup (B \cup C))

 \:

\tt\: = n(A) + n(B \cup C) - n(A \cap (B \cap C))

 \:

 \tt∵ n(A \cup B) = n(A) + n(B) - n(A \cap B)

 \:

 \tt∴ A \cap (B \cup C) = (A \cup B) \cup (A \cap C)    \:  \:  \:  \:  \:  \:  \sf \: ..(distributie \: property)

 \:

 \tt= n(A) + n(B \cup C) - n(A \cap (B \cap C))

 \:

 \tt= n(A) + [n(B) + n(C) - n(B \cap C)] - n(A \cap (B \cap C)

 \:

We know that,

 \:

 \tt(B \cup C) = n(A) + n(B) + n(C) - n(B \cap C) - [n(A \cap B) + n(A \cap C) - n((A \cap B) \cap (A \cap C))]

 \:

 \tt= n(A) + n(B) + n(C) - n(B \cap C) - [n(A \cap B) + n(A \cap C) - n(A \cap B \cap C]

 \:

 \tt= n(A) + n(B) + n(C) -  n(B \cap C) - n(A \cap B) - n(A \cap C) + n(A \cap B \cap C) = RHS

 \:

 \sf∴   \: LHS =  RHS

 \:

Hence Proved

 \:

\pink{\large \mathfrak { \: !! \: hope \: it \: helps \: you \:   !! }}

Answered by Anonymous
6

Answer:

n(A∪B∪C)=n(A∪(B∪C))

\:

\tt\: = n(A) + n(B \cup C) - n(A \cap (B \cap C))=n(A)+n(B∪C)−n(A∩(B∩C))

\:

\tt∵ n(A \cup B) = n(A) + n(B) - n(A \cap B)∵n(A∪B)=n(A)+n(B)−n(A∩B)

\:

\tt∴ A \cap (B \cup C) = (A \cup B) \cup (A \cap C) \: \: \: \: \: \: \sf \: ..(distributie \: property)∴A∩(B∪C)=(A∪B)∪(A∩C)..(distributieproperty)

\:

\tt= n(A) + n(B \cup C) - n(A \cap (B \cap C))=n(A)+n(B∪C)−n(A∩(B∩C))

\:

\tt= n(A) + [n(B) + n(C) - n(B \cap C)] - n(A \cap (B \cap C)=n(A)+[n(B)+n(C)−n(B∩C)]−n(A∩(B∩C)

\:

We know that,

\:

\tt(B \cup C) = n(A) + n(B) + n(C) - n(B \cap C) - [n(A \cap B) + n(A \cap C) - n((A \cap B) \cap (A \cap C))](B∪C)=n(A)+n(B)+n(C)−n(B∩C)−[n(A∩B)+n(A∩C)−n((A∩B)∩(A∩C))]

\:

\tt= n(A) + n(B) + n(C) - n(B \cap C) - [n(A \cap B) + n(A \cap C) - n(A \cap B \cap C]=n(A)+n(B)+n(C)−n(B∩C)−[n(A∩B)+n(A∩C)−n(A∩B∩C]

\:

\tt= n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap B) - n(A \cap C) + n(A \cap B \cap C) = RHS=n(A)+n(B)+n(C)−n(B∩C)−n(A∩B)−n(A∩C)+n(A∩B∩C)=RHS

\:

\sf∴ \: LHS = RHS∴LHS=RHS

Similar questions