Math, asked by Clαrissα, 3 months ago

  \large\underline{ \underline{ \red{ \tt{Question :}}}}

Given that :-

 \sf \: ^{3}\sqrt{3^{x}}  = 5^{ \frac{1}{4} } \:  \: and \:  \: ^{4}\sqrt{5^{y}} =  \sqrt{3}

Then, find the value of 2xy.

 \underline{ \underline{ \tt{Note :}}}

• Need proper explanation.
• No spammed answer.

All the best! ​

Answers

Answered by Anushka786
60

Given :

  •   \pmb{\blue{\sqrt[3]{ {3}^{x} } }} =  \pmb{\green{ 5  ^\frac{1}{4} }}
  •  \pmb{\orange{ \sqrt[4]{ {5}^{y} } }} =  \pmb{\pink{ \sqrt{3} }}

To find :

  • Finding value of 2xy

Solution :

  \pmb{1){\blue{ \sqrt[3]{ {3}^{x} } }} =  {\green{5 ^ \frac{1}{4} }}}

   \Rightarrow  \pmb{\blue{( {{3}^{x}) \frac{1}{3}  \: =   \: } }} \pmb{\green{5  ^\frac{1}{4} }}

  \Rightarrow  \pmb{\blue{3  ^\frac{x}{3} }} =  \pmb{\green{5  ^ \frac{1}{4} }}

   \Rightarrow\pmb{\blue{(3  ^ \frac{x}{3} )^{4}   }} =  \pmb{\green{(5  ^\frac{1}{\cancel{{4}}} \pink{1} )^{\cancel{{4}}} \pink{1} }}

   \boxed{\Rightarrow \pmb{\blue{3  ^ \frac{4x}{3}  =  \pmb{\green{5}}}}}

 \pmb{2){\orange{ \sqrt[4]{ {5}^{y} } }} =  \pmb{\pink{ \sqrt{3} }}}

 \Rightarrow \pmb{{\orange{( {5}^{y} ) \frac{1}{4} }} = {\pink{3  ^\frac{1}{2} }}}

 \Rightarrow \pmb{\orange{(5 ^ \frac{y}{4})  } = {\pink{3 ^ \frac{1}{2} }}}

 \Rightarrow \pmb{{\orange{(3 ^ \frac{4x}{3})  ^ \frac{y}{4}  }} ={\pink{3 ^ \frac{1}{2} }}}

 \Rightarrow\pmb{{\orange{3  ^ \frac{4xy}{12} }} = {\pink{3 ^  \frac{1}{2} }}}

Now, as the bases are same so powers are also same so

 \Rightarrow \pmb{{\orange{ \frac {\cancel{{4xy}} \:  \green{xy}}{\cancel{{12}} \:  \green{3}}}}  \nearrow {\pink{ \frac{1}{2} }} = {\orange{\frac{xy}{3}} \searrow} {\pink{ \frac{1}{2} }}}

 \boxed {\therefore{ \pmb{\purple{2xy = { \gray{3}}}}}}

Answered by StormEyes
50

Solution!!

Let's solve for x!

\sf \to \sqrt[3]{3^{x}}=5^{\frac{1}{4}}

We know that \sf a^{\frac{m}{n}}=\sqrt[n]{a^{m}}

\sf \to \sqrt[3]{3^{x}}=\sqrt[4]{5}

Raising to the power of 3

\sf \to 3^{x}=\sqrt[4]{125}

Taking the logarithm

\sf \to \log_{3}(3^{x})=\log_{3}(\sqrt[4]{125})

We know that \sf \log_{a}(a^{x})=x

\sf \to x=\log_{3}(\sqrt[4]{125})

Writing in the exponential form

\sf \to x=\log_{3}(5^{\frac{3}{4}})

We know that \sf \log_{a}(b^{c})=c\times \log_{a}(b)

\sf \to x=\dfrac{3}{4}\times \log_{3}(5)

Let's solve for y!

\sf \to \sqrt[4]{5^{y}}=\sqrt{3}

Raising to the power of 4

\sf \to 5^{y}=9

Taking the logarithm

\sf \to \log_{5}(5^{y})=\log_{5}(9)

We know that \sf \log_{a}(a^{x})=x

\sf \to y=\log_{5}(9)

Writing in the exponential form

\sf \to y=\log_{5}(3^{2})

We know that \sf \log_{a}(b^{c})=c\times \log_{a}(b)

\sf \to y=2\log_{5}(3)

Now, we'll find the value of 2xy!

\sf \to 2xy=2\times \dfrac{3}{4}\times \log_{3}(5)\times 2\log_{5}(3)

\sf \to 2xy=\dfrac{3}{2}\times \log_{3}(5)\times 2\log_{5}(3)

\sf \to 2xy=3\log_{3}(5)\log_{5}(3)

We know that \sf \log_{b}(a)\times \log_{a}(b)=1

\sf \to 2xy=3\times 1

\sf \to 2xy=3

Similar questions