Math, asked by IIJustAWeebII, 2 months ago


\large{\underline{\underline{\sf{\red{Question:}}}}} \\  \\
\sf{Simplify: - }
 \\ \sf{ \dfrac{1 -   {sin}^{2} \dfrac{\pi}{6} }{1 + {sin}^{2}  \dfrac{\pi}{4}   } \times  \dfrac{ {cos}^{2} \dfrac{\pi}{3} +  {cos}^{2} \dfrac{\pi}{6} }{ {cosec}^{2} \dfrac{\pi}{2} -{cot}^{2} \dfrac{\pi}{2}} \: \div  (sin \frac{\pi}{3} tan \frac{\pi}{6}) + ( {sec}^{2}  \dfrac{\pi}{6}  -  {tan}^{2}   \dfrac{\pi}{6} )}

=> Please Answer without Spamming,, it's a request to you!!​

Answers

Answered by ITZSARCATICVAMPIRE
5

\red{\large\mathfrak {Question}}

 \sf{ \dfrac{1 - {sin}^{2} \dfrac{\pi}{6} }{1 + {sin}^{2} \dfrac{\pi}{4} } \times \dfrac{ {cos}^{2} \dfrac{\pi}{3} + {cos}^{2} \dfrac{\pi}{6} }{ {cosec}^{2} \dfrac{\pi}{2} -{cot}^{2} \dfrac{\pi}{2}} \: \div (sin \frac{\pi}{3} tan \frac{\pi}{6}) + ( {sec}^{2} \dfrac{\pi}{6} - {tan}^{2} \dfrac{\pi}{6} )}

\blue{\large\mathfrak {Solution}}

A/q to trigonometric ratios : 1-sin²=cos²

Now putting the values of the variables :–

 =\sf \frac{ {cos}^{2} \frac{\pi}{6}  }{1 +  { (\frac{1}{2} )}^{2} }  \times   \frac{ ({ \frac{1}{2}) }^{2} + ( { \frac{ \sqrt{3} }{2}) }^{2}  }{1}  \div ( \frac{ \sqrt{3} }{2}  \times  \frac{1}{ \sqrt{3} } ) \times 1 \\

 =  \frac{ { (\frac{ \sqrt{3} }{2}) }^{2} }{1 +  \frac{1}{2} }  \times  \frac{ \frac{1}{4} +  \frac{3}{4}  }{1}  \div  \frac{1}{2}  \times 1 \\

 =  \frac{ \frac{3}{4} }{ \frac{3}{2} }  \times  \frac{1}{1}  \times 2 \times 1 \\

 =  \frac{3}{4}  \times  \frac{2}{3}  \times 2 \\

Cancelling all the terms, we get :—

= \bold{\boxed{\pink{\large{ \:  \: 1 \:  \: }}}}</p><p>

\green{\large\mathfrak {Hope \:  it  \: helps  \: you}}

Answered by ITZLAMEFLAKE
1

Solution</p><p></p><p>A/q to trigonometric ratios : 1-sin²=cos²</p><p></p><p>Now putting the values of the variables :–</p><p></p><p>\begin{gathered} =\sf \frac{ {cos}^{2} \frac{\pi}{6} }{1 + { (\frac{1}{2} )}^{2} } \times \frac{ ({ \frac{1}{2}) }^{2} + ( { \frac{ \sqrt{3} }{2}) }^{2} }{1} \div ( \frac{ \sqrt{3} }{2} \times \frac{1}{ \sqrt{3} } ) \times 1 \\ \end{gathered}=1+(21)2cos26π×1(21)2+(23)2÷(23×31)×1</p><p></p><p>\begin{gathered} = \frac{ { (\frac{ \sqrt{3} }{2}) }^{2} }{1 + \frac{1}{2} } \times \frac{ \frac{1}{4} + \frac{3}{4} }{1} \div \frac{1}{2} \times 1 \\ \end{gathered}=1+21(23)2×141+43÷21×1</p><p></p><p>\begin{gathered} = \frac{ \frac{3}{4} }{ \frac{3}{2} } \times \frac{1}{1} \times 2 \times 1 \\ \end{gathered}=2343×11×2×1</p><p></p><p>\begin{gathered} = \frac{3}{4} \times \frac{2}{3} \times 2 \\ \end{gathered}=43×32×2</p><p></p><p>Cancelling all the terms, we get :—</p><p></p><p>= \bold{\boxed{\pink{\large{ \: \: 1 \: \: }}}} &lt; /p &gt; &lt; p &gt;=1&lt;/p&gt;&lt;p&gt;</p><p></p><p>\green{\large\mathfrak {Hope \: it \: helps \: you}}Hopeithelpsyou</p><p></p><p>

Similar questions