Math, asked by Anonymous, 6 hours ago


\left.\begin{array}{c c c} \displaystyle{f(x) ={\begin{cases} \sf {x}^{2} + 2x + 3 \: \: when \: 0 \le \: x \le 1 \\ \\ \sf\sqrt{4x} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{when \: 1 < x \le 4}\end{cases}}}\end{array}\right \}

Answers

Answered by pragyatiwariclass8th
4

Step-by-step explanation:

I hope help u

.....❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️

Attachments:
Answered by spyXsenorita
4

\tt\huge{Answer}

 \displaystyle{ \int \limits_ {0}^{4} f( \sf{x})dx} =  \int \limits_{0}^{1}( \sf {x}^{2}   + 2x + 3)dx +  \int \limits_{1}^{4}( \sqrt{4x})dx

   \displaystyle{  =  \int \limits_{0}^{1}( \sf {x}^{2}   + 2x + 3)dx +  \int \limits_{1}^{4} \bigg(2 \sqrt{x} \bigg)dx}

   = \left[\begin{array}{c c c} \\  \sf{ \dfrac{ {x}^{2 + 1} }{(2 + 1) } + 2 \dfrac{ {x}^{1 + 1} }{(1 + 1)}  + 3x} \\  \\ \end{array} \right]_ {0}^{1}  + \\  \\   \left[\begin{array}{c c c}  \\  \sf{2  \dfrac{ {x}^{ \frac{1}{2}  + 1} }{ \bigg( \dfrac{1}{2}   + 1 \bigg)} } \\  \\  \end{array}\right]_{1}^{4}

= \left[\begin{array}{c c c} \\  \sf{ \dfrac{ {x}^{3} }{3} + 2 \dfrac{ {x}^{2} }{2}  + 3x} \\  \\ \end{array} \right]_ {0}^{1}  +  \left[\begin{array}{c c c}  \\  \sf{2  \dfrac{ {x}^{ \frac{3}{2} } }{ \dfrac{3}{2} } } \\  \\  \end{array}\right]_{1}^{4}

= \left[\begin{array}{c c c} \\  \sf{ \dfrac{ {x}^{3} }{3} +   {x}^{2} + 3x} \\  \\ \end{array} \right]_ {0}^{1}  +  \left[\begin{array}{c c c}  \\  \sf{2  \dfrac{ {4x}^{ \frac{3}{2} } }{3 }}\\  \\  \end{array}\right]_{1}^{4}

 = \left[\begin{array}{c c c}   \\ \sf{ \bigg( \dfrac{(1)}{3} +  {(1)}^{2}  + 3(1)}  \bigg)  -  \bigg( \sf{ \dfrac{ {(0)}^{3} }{3} +  {(0)}^{2}} + 3(0) \bigg) \\  \\ \end{array} \right]+

  \left[\begin{array}{c c c} \\  \bigg(  \sf{\dfrac{4(4)^{ \frac{3}{2} } }{3} \bigg) -  \bigg( \dfrac{4(4)^{ \frac{3}{2} } }{3}  \bigg)}  \\  \\ \end{array}\right]

 = \left[\begin{array}{c c c}   \\ \sf{ \bigg( \dfrac{1}{3} +  1 + 3} \bigg)  -  \bigg( \sf{ 0 + 0 + 0} \bigg) \\  \\  \end{array}  \right]   + \left[\begin{array}{c c c} \\  \sf{ \bigg( \dfrac{4(8)}{3} \bigg) -  \bigg( \dfrac{4(1)}{2}  \bigg) } \\  \\ \end{array}\right]

 = \left[\begin{array}{c c c}   \\ \sf{ \bigg( \dfrac{1}{3} +  \dfrac{12}{3} }  \bigg)   \\  \\  \end{array}  \right]   + \left[\begin{array}{c c c} \\  \sf{ \bigg( \dfrac{32}{3} \bigg) -  \bigg( \dfrac{4}{2}  \bigg) } \\  \\ \end{array}\right]

 =  \sf{ \dfrac{13}{3}  +  \dfrac{28}{3} }

 \sf{ =  \dfrac{41}{3} }

∴The Definite integral of the piece wise defined function f(x) from 0 to 4 is equal to  \sf{\dfrac{41}{3} }

Similar questions